|
| 1 | +"""Wrapper to mimic (parts of) np.random API surface. |
| 2 | +
|
| 3 | +NumPy has strict guarantees on reproducibility etc; here we don't give any. |
| 4 | +
|
| 5 | +Q: default dtype is float64 in numpy |
| 6 | +
|
| 7 | +""" |
| 8 | +from math import sqrt |
| 9 | + |
| 10 | +import torch |
| 11 | + |
| 12 | +from . import asarray |
| 13 | +from ._detail import _util |
| 14 | +from ._detail._scalar_types import default_float_type as _default_float_type |
| 15 | + |
| 16 | +_default_dtype = _default_float_type.torch_dtype |
| 17 | + |
| 18 | +__all__ = ["seed", "random_sample", "sample", "random", "rand", "randn", "normal"] |
| 19 | + |
| 20 | + |
| 21 | +def array_or_scalar(values, py_type=float): |
| 22 | + if values.numel() == 1: |
| 23 | + return py_type(values.item()) |
| 24 | + else: |
| 25 | + return asarray(values) |
| 26 | + |
| 27 | + |
| 28 | +def seed(seed=None): |
| 29 | + if seed is not None: |
| 30 | + torch.random.manual_seed() |
| 31 | + |
| 32 | + |
| 33 | +def random_sample(size=None): |
| 34 | + if size is None: |
| 35 | + size = () |
| 36 | + values = torch.empty(size, dtype=_default_dtype).uniform_() |
| 37 | + return array_or_scalar(values) |
| 38 | + |
| 39 | + |
| 40 | +def rand(*size): |
| 41 | + return random_sample(size) |
| 42 | + |
| 43 | + |
| 44 | +sample = random_sample |
| 45 | +random = random_sample |
| 46 | + |
| 47 | + |
| 48 | +def uniform(low=0.0, high=1.0, size=None): |
| 49 | + if size is None: |
| 50 | + size = () |
| 51 | + values = torch.empty(size, dtype=_default_dtype).uniform_(low, high) |
| 52 | + return array_or_scalar(values) |
| 53 | + |
| 54 | + |
| 55 | +def randn(*size): |
| 56 | + values = torch.randn(size, dtype=_default_dtype) |
| 57 | + return array_or_scalar(values) |
| 58 | + |
| 59 | + |
| 60 | +def normal(loc=0.0, scale=1.0, size=None): |
| 61 | + if size is None: |
| 62 | + size = () |
| 63 | + values = torch.empty(size, dtype=_default_dtype).normal_(loc, scale) |
| 64 | + return array_or_scalar(values) |
| 65 | + |
| 66 | + |
| 67 | +def shuffle(x): |
| 68 | + x_tensor = asarray(x).get() |
| 69 | + perm = torch.randperm(x_tensor.shape[0]) |
| 70 | + xp = x_tensor[perm] |
| 71 | + x_tensor.copy_(xp) |
| 72 | + |
| 73 | + |
| 74 | +def randint(low, high=None, size=None): |
| 75 | + if size is None: |
| 76 | + size = () |
| 77 | + if not isinstance(size, (tuple, list)): |
| 78 | + size = (size,) |
| 79 | + if high is None: |
| 80 | + low, high = 0, low |
| 81 | + values = torch.randint(low, high, size=size) |
| 82 | + return array_or_scalar(values) |
| 83 | + |
| 84 | + |
| 85 | +def choice(a, size=None, replace=True, p=None): |
| 86 | + # https://stackoverflow.com/questions/59461811/random-choice-with-pytorch |
| 87 | + if isinstance(a, int): |
| 88 | + a_tensor = torch.arange(a) |
| 89 | + else: |
| 90 | + a_tensor = asarray(a).get() |
| 91 | + |
| 92 | + # number of draws |
| 93 | + if size is None: |
| 94 | + num_el = 1 |
| 95 | + elif _util.is_sequence(size): |
| 96 | + num_el = 1 |
| 97 | + for el in size: |
| 98 | + num_el *= el |
| 99 | + else: |
| 100 | + num_el = size |
| 101 | + |
| 102 | + # prepare the probabilities |
| 103 | + if p is None: |
| 104 | + p_tensor = torch.ones_like(a_tensor) / a_tensor.shape[0] |
| 105 | + else: |
| 106 | + p_tensor = asarray(p, dtype=float).get() |
| 107 | + |
| 108 | + # cf https://github.com/numpy/numpy/blob/main/numpy/random/mtrand.pyx#L973 |
| 109 | + atol = sqrt(torch.finfo(torch.float64).eps) |
| 110 | + if abs(p_tensor.sum() - 1.0) > atol: |
| 111 | + raise ValueError("probabilities do not sum to 1.") |
| 112 | + |
| 113 | + # actually sample |
| 114 | + indices = torch.multinomial(p_tensor, num_el, replacement=replace) |
| 115 | + |
| 116 | + if _util.is_sequence(size): |
| 117 | + indices = indices.reshape(size) |
| 118 | + |
| 119 | + samples = a_tensor[indices] |
| 120 | + |
| 121 | + return asarray(samples) |
0 commit comments