Skip to content

Commit f192c2a

Browse files
charlesdong1991Pingviinituutti
authored andcommitted
DOC: Fix flake8 issues in doc/source/reshaping.rst (pandas-dev#24183)
1 parent 0f0bd29 commit f192c2a

File tree

2 files changed

+14
-12
lines changed

2 files changed

+14
-12
lines changed

doc/source/reshaping.rst

+14-11
Original file line numberDiff line numberDiff line change
@@ -18,12 +18,12 @@ Reshaping by pivoting DataFrame objects
1818
tm.N = 3
1919
2020
def unpivot(frame):
21-
N, K = frame.shape
22-
data = {'value': frame.to_numpy().ravel('F'),
23-
'variable': np.asarray(frame.columns).repeat(N),
24-
'date': np.tile(np.asarray(frame.index), K)}
25-
columns = ['date', 'variable', 'value']
26-
return pd.DataFrame(data, columns=columns)
21+
N, K = frame.shape
22+
data = {'value': frame.to_numpy().ravel('F'),
23+
'variable': np.asarray(frame.columns).repeat(N),
24+
'date': np.tile(np.asarray(frame.index), K)}
25+
columns = ['date', 'variable', 'value']
26+
return pd.DataFrame(data, columns=columns)
2727
2828
df = unpivot(tm.makeTimeDataFrame())
2929
@@ -371,8 +371,8 @@ Consider a data set like this:
371371
'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
372372
'D': np.random.randn(24),
373373
'E': np.random.randn(24),
374-
'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)] +
375-
[datetime.datetime(2013, i, 15) for i in range(1, 13)]})
374+
'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)]
375+
+ [datetime.datetime(2013, i, 15) for i in range(1, 13)]})
376376
df
377377
378378
We can produce pivot tables from this data very easily:
@@ -397,7 +397,8 @@ Also, you can use ``Grouper`` for ``index`` and ``columns`` keywords. For detail
397397

398398
.. ipython:: python
399399
400-
pd.pivot_table(df, values='D', index=pd.Grouper(freq='M', key='F'), columns='C')
400+
pd.pivot_table(df, values='D', index=pd.Grouper(freq='M', key='F'),
401+
columns='C')
401402
402403
You can render a nice output of the table omitting the missing values by
403404
calling ``to_string`` if you wish:
@@ -693,6 +694,7 @@ handling of NaN:
693694

694695
.. code-block:: ipython
695696
697+
In [1]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
696698
In [2]: pd.factorize(x, sort=True)
697699
Out[2]:
698700
(array([ 2, 2, -1, 3, 0, 1]),
@@ -721,7 +723,8 @@ DataFrame will be pivoted in the answers below.
721723
n = 20
722724
723725
cols = np.array(['key', 'row', 'item', 'col'])
724-
df = cols + pd.DataFrame((np.random.randint(5, size=(n, 4)) // [2, 1, 2, 1]).astype(str))
726+
df = cols + pd.DataFrame((np.random.randint(5, size=(n, 4))
727+
// [2, 1, 2, 1]).astype(str))
725728
df.columns = cols
726729
df = df.join(pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val'))
727730
@@ -734,7 +737,7 @@ Suppose we wanted to pivot ``df`` such that the ``col`` values are columns,
734737
``row`` values are the index, and the mean of ``val0`` are the values? In
735738
particular, the resulting DataFrame should look like:
736739

737-
.. code-block:: ipython
740+
.. note::
738741

739742
col col0 col1 col2 col3 col4
740743
row

setup.cfg

-1
Original file line numberDiff line numberDiff line change
@@ -84,7 +84,6 @@ exclude =
8484
doc/source/missing_data.rst
8585
doc/source/options.rst
8686
doc/source/release.rst
87-
doc/source/reshaping.rst
8887

8988

9089
[yapf]

0 commit comments

Comments
 (0)