Skip to content

Commit e3fe170

Browse files
jorisvandenbosschePingviinituutti
authored andcommitted
DOC: remove long listings in the tutorials.rst page (pandas-dev#24152)
1 parent c1a7d1e commit e3fe170

File tree

1 file changed

+10
-118
lines changed

1 file changed

+10
-118
lines changed

doc/source/tutorials.rst

+10-118
Original file line numberDiff line numberDiff line change
@@ -18,117 +18,28 @@ A handy pandas `cheat sheet <http://pandas.pydata.org/Pandas_Cheat_Sheet.pdf>`_.
1818
Community Guides
1919
================
2020

21-
pandas Cookbook
22-
---------------
21+
pandas Cookbook by Julia Evans
22+
------------------------------
2323

2424
The goal of this 2015 cookbook (by `Julia Evans <http://jvns.ca>`_) is to
2525
give you some concrete examples for getting started with pandas. These
2626
are examples with real-world data, and all the bugs and weirdness that
2727
entails.
28+
For the table of contents, see the `pandas-cookbook GitHub
29+
repository <http://github.com/jvns/pandas-cookbook>`_.
2830

29-
Here are links to the v0.2 release. For an up-to-date table of contents, see the `pandas-cookbook GitHub
30-
repository <http://github.com/jvns/pandas-cookbook>`_. To run the examples in this tutorial, you'll need to
31-
clone the GitHub repository and get IPython Notebook running.
32-
See `How to use this cookbook <https://github.com/jvns/pandas-cookbook#how-to-use-this-cookbook>`_.
33-
34-
* `A quick tour of the IPython Notebook: <http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb>`_
35-
Shows off IPython's awesome tab completion and magic functions.
36-
* `Chapter 1: <http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb>`_
37-
Reading your data into pandas is pretty much the easiest thing. Even
38-
when the encoding is wrong!
39-
* `Chapter 2: <http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%202%20-%20Selecting%20data%20%26%20finding%20the%20most%20common%20complaint%20type.ipynb>`_
40-
It's not totally obvious how to select data from a pandas dataframe.
41-
Here we explain the basics (how to take slices and get columns)
42-
* `Chapter 3: <http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%20%28or%2C%20more%20selecting%20data%29.ipynb>`_
43-
Here we get into serious slicing and dicing and learn how to filter
44-
dataframes in complicated ways, really fast.
45-
* `Chapter 4: <http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb>`_
46-
Groupby/aggregate is seriously my favorite thing about pandas
47-
and I use it all the time. You should probably read this.
48-
* `Chapter 5: <http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb>`_
49-
Here you get to find out if it's cold in Montreal in the winter
50-
(spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
51-
* `Chapter 6: <http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%206%20-%20String%20Operations-%20Which%20month%20was%20the%20snowiest.ipynb>`_
52-
Strings with pandas are great. It has all these vectorized string
53-
operations and they're the best. We will turn a bunch of strings
54-
containing "Snow" into vectors of numbers in a trice.
55-
* `Chapter 7: <http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb>`_
56-
Cleaning up messy data is never a joy, but with pandas it's easier.
57-
* `Chapter 8: <http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb>`_
58-
Parsing Unix timestamps is confusing at first but it turns out
59-
to be really easy.
60-
* `Chapter 9: <http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%209%20-%20Loading%20data%20from%20SQL%20databases.ipynb>`_
61-
Reading data from SQL databases.
62-
63-
64-
Lessons for new pandas users
31+
Learn Pandas by Hernan Rojas
6532
----------------------------
6633

67-
For more resources, please visit the main `repository <https://bitbucket.org/hrojas/learn-pandas>`__.
68-
69-
* `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb>`_
70-
* Importing libraries
71-
* Creating data sets
72-
* Creating data frames
73-
* Reading from CSV
74-
* Exporting to CSV
75-
* Finding maximums
76-
* Plotting data
77-
78-
* `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb>`_
79-
* Reading from TXT
80-
* Exporting to TXT
81-
* Selecting top/bottom records
82-
* Descriptive statistics
83-
* Grouping/sorting data
84-
85-
* `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb>`_
86-
* Creating functions
87-
* Reading from EXCEL
88-
* Exporting to EXCEL
89-
* Outliers
90-
* Lambda functions
91-
* Slice and dice data
92-
93-
* `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb>`_
94-
* Adding/deleting columns
95-
* Index operations
96-
97-
* `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb>`_
98-
* Stack/Unstack/Transpose functions
99-
100-
* `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb>`_
101-
* GroupBy function
102-
103-
* `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb>`_
104-
* Ways to calculate outliers
105-
106-
* `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb>`_
107-
* Read from Microsoft SQL databases
108-
109-
* `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb>`_
110-
* Export to CSV/EXCEL/TXT
111-
112-
* `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb>`_
113-
* Converting between different kinds of formats
114-
115-
* `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb>`_
116-
* Combining data from various sources
117-
34+
A set of lesson for new pandas users: `https://bitbucket.org/hrojas/learn-pandas>`__.
11835

11936
Practical data analysis with Python
12037
-----------------------------------
12138

122-
This `guide <http://wavedatalab.github.io/datawithpython>`_ is a comprehensive introduction to the data analysis process using the Python data ecosystem and an interesting open dataset.
123-
There are four sections covering selected topics as follows:
124-
125-
* `Munging Data <http://wavedatalab.github.io/datawithpython/munge.html>`_
126-
127-
* `Aggregating Data <http://wavedatalab.github.io/datawithpython/aggregate.html>`_
128-
129-
* `Visualizing Data <http://wavedatalab.github.io/datawithpython/visualize.html>`_
130-
131-
* `Time Series <http://wavedatalab.github.io/datawithpython/timeseries.html>`_
39+
This `guide <http://wavedatalab.github.io/datawithpython>`_ is an introduction to the data analysis process using the Python data ecosystem and an interesting open dataset.
40+
There are four sections covering selected topics as `munging data <http://wavedatalab.github.io/datawithpython/munge.html>`__,
41+
`aggregating data <http://wavedatalab.github.io/datawithpython/aggregate.html>`_, `visualizing data <http://wavedatalab.github.io/datawithpython/visualize.html>`_
42+
and `time series <http://wavedatalab.github.io/datawithpython/timeseries.html>`_.
13243

13344
.. _tutorial-exercises-new-users:
13445

@@ -137,25 +48,6 @@ Exercises for new users
13748
Practice your skills with real data sets and exercises.
13849
For more resources, please visit the main `repository <https://github.com/guipsamora/pandas_exercises>`__.
13950

140-
* `01 - Getting & Knowing Your Data <https://github.com/guipsamora/pandas_exercises/tree/master/01_Getting_%26_Knowing_Your_Data>`_
141-
142-
* `02 - Filtering & Sorting <https://github.com/guipsamora/pandas_exercises/tree/master/02_Filtering_%26_Sorting>`_
143-
144-
* `03 - Grouping <https://github.com/guipsamora/pandas_exercises/tree/master/03_Grouping>`_
145-
146-
* `04 - Apply <https://github.com/guipsamora/pandas_exercises/tree/master/04_Apply>`_
147-
148-
* `05 - Merge <https://github.com/guipsamora/pandas_exercises/tree/master/05_Merge>`_
149-
150-
* `06 - Stats <https://github.com/guipsamora/pandas_exercises/tree/master/06_Stats>`_
151-
152-
* `07 - Visualization <https://github.com/guipsamora/pandas_exercises/tree/master/07_Visualization>`_
153-
154-
* `08 - Creating Series and DataFrames <https://github.com/guipsamora/pandas_exercises/tree/master/08_Creating_Series_and_DataFrames/Pokemon>`_
155-
156-
* `09 - Time Series <https://github.com/guipsamora/pandas_exercises/tree/master/09_Time_Series>`_
157-
158-
* `10 - Deleting <https://github.com/guipsamora/pandas_exercises/tree/master/10_Deleting>`_
15951

16052
.. _tutorial-modern:
16153

0 commit comments

Comments
 (0)