@@ -369,31 +369,6 @@ ctypedef fused algos_t:
369
369
uint8_t
370
370
371
371
372
- # TODO: unused; needed?
373
- @ cython.wraparound (False )
374
- @ cython.boundscheck (False )
375
- cpdef map_indices(ndarray[algos_t] index):
376
- """
377
- Produce a dict mapping the values of the input array to their respective
378
- locations.
379
-
380
- Example:
381
- array(['hi', 'there']) --> {'hi' : 0 , 'there' : 1}
382
-
383
- Better to do this with Cython because of the enormous speed boost.
384
- """
385
- cdef:
386
- Py_ssize_t i, length
387
- dict result = {}
388
-
389
- length = len (index)
390
-
391
- for i in range (length):
392
- result[index[i]] = i
393
-
394
- return result
395
-
396
-
397
372
@ cython.boundscheck (False )
398
373
@ cython.wraparound (False )
399
374
def pad (ndarray[algos_t] old , ndarray[algos_t] new , limit = None ):
@@ -458,20 +433,6 @@ def pad(ndarray[algos_t] old, ndarray[algos_t] new, limit=None):
458
433
return indexer
459
434
460
435
461
- pad_float64 = pad[" float64_t" ]
462
- pad_float32 = pad[" float32_t" ]
463
- pad_object = pad[" object" ]
464
- pad_int64 = pad[" int64_t" ]
465
- pad_int32 = pad[" int32_t" ]
466
- pad_int16 = pad[" int16_t" ]
467
- pad_int8 = pad[" int8_t" ]
468
- pad_uint64 = pad[" uint64_t" ]
469
- pad_uint32 = pad[" uint32_t" ]
470
- pad_uint16 = pad[" uint16_t" ]
471
- pad_uint8 = pad[" uint8_t" ]
472
- pad_bool = pad[" uint8_t" ]
473
-
474
-
475
436
@ cython.boundscheck (False )
476
437
@ cython.wraparound (False )
477
438
def pad_inplace (ndarray[algos_t] values ,
@@ -509,15 +470,6 @@ def pad_inplace(ndarray[algos_t] values,
509
470
val = values[i]
510
471
511
472
512
- pad_inplace_float64 = pad_inplace[" float64_t" ]
513
- pad_inplace_float32 = pad_inplace[" float32_t" ]
514
- pad_inplace_object = pad_inplace[" object" ]
515
- pad_inplace_int64 = pad_inplace[" int64_t" ]
516
- pad_inplace_int32 = pad_inplace[" int32_t" ]
517
- pad_inplace_uint64 = pad_inplace[" uint64_t" ]
518
- pad_inplace_bool = pad_inplace[" uint8_t" ]
519
-
520
-
521
473
@ cython.boundscheck (False )
522
474
@ cython.wraparound (False )
523
475
def pad_2d_inplace (ndarray[algos_t , ndim = 2 ] values,
@@ -557,15 +509,6 @@ def pad_2d_inplace(ndarray[algos_t, ndim=2] values,
557
509
val = values[j, i]
558
510
559
511
560
- pad_2d_inplace_float64 = pad_2d_inplace[" float64_t" ]
561
- pad_2d_inplace_float32 = pad_2d_inplace[" float32_t" ]
562
- pad_2d_inplace_object = pad_2d_inplace[" object" ]
563
- pad_2d_inplace_int64 = pad_2d_inplace[" int64_t" ]
564
- pad_2d_inplace_int32 = pad_2d_inplace[" int32_t" ]
565
- pad_2d_inplace_uint64 = pad_2d_inplace[" uint64_t" ]
566
- pad_2d_inplace_bool = pad_2d_inplace[" uint8_t" ]
567
-
568
-
569
512
"""
570
513
Backfilling logic for generating fill vector
571
514
@@ -657,20 +600,6 @@ def backfill(ndarray[algos_t] old, ndarray[algos_t] new, limit=None):
657
600
return indexer
658
601
659
602
660
- backfill_float64 = backfill[" float64_t" ]
661
- backfill_float32 = backfill[" float32_t" ]
662
- backfill_object = backfill[" object" ]
663
- backfill_int64 = backfill[" int64_t" ]
664
- backfill_int32 = backfill[" int32_t" ]
665
- backfill_int16 = backfill[" int16_t" ]
666
- backfill_int8 = backfill[" int8_t" ]
667
- backfill_uint64 = backfill[" uint64_t" ]
668
- backfill_uint32 = backfill[" uint32_t" ]
669
- backfill_uint16 = backfill[" uint16_t" ]
670
- backfill_uint8 = backfill[" uint8_t" ]
671
- backfill_bool = backfill[" uint8_t" ]
672
-
673
-
674
603
@ cython.boundscheck (False )
675
604
@ cython.wraparound (False )
676
605
def backfill_inplace (ndarray[algos_t] values ,
@@ -708,15 +637,6 @@ def backfill_inplace(ndarray[algos_t] values,
708
637
val = values[i]
709
638
710
639
711
- backfill_inplace_float64 = backfill_inplace[" float64_t" ]
712
- backfill_inplace_float32 = backfill_inplace[" float32_t" ]
713
- backfill_inplace_object = backfill_inplace[" object" ]
714
- backfill_inplace_int64 = backfill_inplace[" int64_t" ]
715
- backfill_inplace_int32 = backfill_inplace[" int32_t" ]
716
- backfill_inplace_uint64 = backfill_inplace[" uint64_t" ]
717
- backfill_inplace_bool = backfill_inplace[" uint8_t" ]
718
-
719
-
720
640
@ cython.boundscheck (False )
721
641
@ cython.wraparound (False )
722
642
def backfill_2d_inplace (ndarray[algos_t , ndim = 2 ] values,
@@ -756,15 +676,6 @@ def backfill_2d_inplace(ndarray[algos_t, ndim=2] values,
756
676
val = values[j, i]
757
677
758
678
759
- backfill_2d_inplace_float64 = backfill_2d_inplace[" float64_t" ]
760
- backfill_2d_inplace_float32 = backfill_2d_inplace[" float32_t" ]
761
- backfill_2d_inplace_object = backfill_2d_inplace[" object" ]
762
- backfill_2d_inplace_int64 = backfill_2d_inplace[" int64_t" ]
763
- backfill_2d_inplace_int32 = backfill_2d_inplace[" int32_t" ]
764
- backfill_2d_inplace_uint64 = backfill_2d_inplace[" uint64_t" ]
765
- backfill_2d_inplace_bool = backfill_2d_inplace[" uint8_t" ]
766
-
767
-
768
679
@ cython.wraparound (False )
769
680
@ cython.boundscheck (False )
770
681
def arrmap (ndarray[algos_t] index , object func ):
@@ -875,20 +786,6 @@ def is_monotonic(ndarray[algos_t, ndim=1] arr, bint timelike):
875
786
return is_monotonic_inc, is_monotonic_dec, is_strict_monotonic
876
787
877
788
878
- is_monotonic_float64 = is_monotonic[" float64_t" ]
879
- is_monotonic_float32 = is_monotonic[" float32_t" ]
880
- is_monotonic_object = is_monotonic[" object" ]
881
- is_monotonic_int64 = is_monotonic[" int64_t" ]
882
- is_monotonic_int32 = is_monotonic[" int32_t" ]
883
- is_monotonic_int16 = is_monotonic[" int16_t" ]
884
- is_monotonic_int8 = is_monotonic[" int8_t" ]
885
- is_monotonic_uint64 = is_monotonic[" uint64_t" ]
886
- is_monotonic_uint32 = is_monotonic[" uint32_t" ]
887
- is_monotonic_uint16 = is_monotonic[" uint16_t" ]
888
- is_monotonic_uint8 = is_monotonic[" uint8_t" ]
889
- is_monotonic_bool = is_monotonic[" uint8_t" ]
890
-
891
-
892
789
# generated from template
893
790
include " algos_common_helper.pxi"
894
791
include " algos_rank_helper.pxi"
0 commit comments