|
15 | 15 | from pandas.util._decorators import Appender
|
16 | 16 |
|
17 | 17 | from pandas.core.dtypes.common import (
|
18 |
| - _NS_DTYPE, _TD_DTYPE, ensure_int64, is_datetime64_dtype, is_dtype_equal, |
19 |
| - is_float_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, |
| 18 | + _NS_DTYPE, _TD_DTYPE, ensure_int64, is_datetime64_dtype, is_float_dtype, |
| 19 | + is_integer_dtype, is_list_like, is_object_dtype, is_scalar, |
20 | 20 | is_string_dtype, is_timedelta64_dtype, is_timedelta64_ns_dtype,
|
21 | 21 | pandas_dtype)
|
22 | 22 | from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
@@ -134,28 +134,61 @@ def dtype(self):
|
134 | 134 | _attributes = ["freq"]
|
135 | 135 |
|
136 | 136 | def __init__(self, values, dtype=_TD_DTYPE, freq=None, copy=False):
|
137 |
| - if not hasattr(values, "dtype"): |
138 |
| - raise ValueError( |
| 137 | + if isinstance(values, (ABCSeries, ABCIndexClass)): |
| 138 | + values = values._values |
| 139 | + |
| 140 | + inferred_freq = getattr(values, "_freq", None) |
| 141 | + |
| 142 | + if isinstance(values, type(self)): |
| 143 | + if freq is None: |
| 144 | + freq = values.freq |
| 145 | + elif freq and values.freq: |
| 146 | + freq = to_offset(freq) |
| 147 | + freq, _ = dtl.validate_inferred_freq(freq, values.freq, False) |
| 148 | + values = values._data |
| 149 | + |
| 150 | + if not isinstance(values, np.ndarray): |
| 151 | + msg = ( |
139 | 152 | "Unexpected type '{}'. 'values' must be a TimedeltaArray "
|
140 | 153 | "ndarray, or Series or Index containing one of those."
|
141 |
| - .format(type(values).__name__)) |
| 154 | + ) |
| 155 | + raise ValueError(msg.format(type(values).__name__)) |
| 156 | + |
| 157 | + if values.dtype == 'i8': |
| 158 | + # for compat with datetime/timedelta/period shared methods, |
| 159 | + # we can sometimes get here with int64 values. These represent |
| 160 | + # nanosecond UTC (or tz-naive) unix timestamps |
| 161 | + values = values.view(_TD_DTYPE) |
| 162 | + |
| 163 | + if values.dtype != _TD_DTYPE: |
| 164 | + raise TypeError(_BAD_DTYPE.format(dtype=values.dtype)) |
| 165 | + |
| 166 | + try: |
| 167 | + dtype_mismatch = dtype != _TD_DTYPE |
| 168 | + except TypeError: |
| 169 | + raise TypeError(_BAD_DTYPE.format(dtype=dtype)) |
| 170 | + else: |
| 171 | + if dtype_mismatch: |
| 172 | + raise TypeError(_BAD_DTYPE.format(dtype=dtype)) |
| 173 | + |
142 | 174 | if freq == "infer":
|
143 |
| - raise ValueError( |
| 175 | + msg = ( |
144 | 176 | "Frequency inference not allowed in TimedeltaArray.__init__. "
|
145 |
| - "Use 'pd.array()' instead.") |
| 177 | + "Use 'pd.array()' instead." |
| 178 | + ) |
| 179 | + raise ValueError(msg) |
146 | 180 |
|
147 |
| - if dtype is not None and not is_dtype_equal(dtype, _TD_DTYPE): |
148 |
| - raise TypeError("dtype {dtype} cannot be converted to " |
149 |
| - "timedelta64[ns]".format(dtype=dtype)) |
| 181 | + if copy: |
| 182 | + values = values.copy() |
| 183 | + if freq: |
| 184 | + freq = to_offset(freq) |
150 | 185 |
|
151 |
| - if values.dtype == 'i8': |
152 |
| - values = values.view('timedelta64[ns]') |
| 186 | + self._data = values |
| 187 | + self._dtype = dtype |
| 188 | + self._freq = freq |
153 | 189 |
|
154 |
| - result = type(self)._from_sequence(values, dtype=dtype, |
155 |
| - copy=copy, freq=freq) |
156 |
| - self._data = result._data |
157 |
| - self._freq = result._freq |
158 |
| - self._dtype = result._dtype |
| 190 | + if inferred_freq is None and freq is not None: |
| 191 | + type(self)._validate_frequency(self, freq) |
159 | 192 |
|
160 | 193 | @classmethod
|
161 | 194 | def _simple_new(cls, values, freq=None, dtype=_TD_DTYPE):
|
|
0 commit comments