|
221 | 221 |
|
222 | 222 | See Also
|
223 | 223 | --------
|
224 |
| -merge_ordered : merge with optional filling/interpolation. |
225 |
| -merge_asof : merge on nearest keys. |
226 |
| -DataFrame.join : similar method using indices. |
| 224 | +merge_ordered : Merge with optional filling/interpolation. |
| 225 | +merge_asof : Merge on nearest keys. |
| 226 | +DataFrame.join : Similar method using indices. |
227 | 227 |
|
228 | 228 | Examples
|
229 | 229 | --------
|
@@ -348,10 +348,10 @@ class DataFrame(NDFrame):
|
348 | 348 |
|
349 | 349 | See Also
|
350 | 350 | --------
|
351 |
| - DataFrame.from_records : constructor from tuples, also record arrays |
352 |
| - DataFrame.from_dict : from dicts of Series, arrays, or dicts |
353 |
| - DataFrame.from_items : from sequence of (key, value) pairs |
354 |
| - pandas.read_csv, pandas.read_table, pandas.read_clipboard |
| 351 | + DataFrame.from_records : Constructor from tuples, also record arrays. |
| 352 | + DataFrame.from_dict : From dicts of Series, arrays, or dicts. |
| 353 | + DataFrame.from_items : From sequence of (key, value) pairs |
| 354 | + pandas.read_csv, pandas.read_table, pandas.read_clipboard. |
355 | 355 | """
|
356 | 356 |
|
357 | 357 | @property
|
@@ -1066,8 +1066,8 @@ def from_dict(cls, data, orient='columns', dtype=None, columns=None):
|
1066 | 1066 | See Also
|
1067 | 1067 | --------
|
1068 | 1068 | DataFrame.from_records : DataFrame from ndarray (structured
|
1069 |
| - dtype), list of tuples, dict, or DataFrame |
1070 |
| - DataFrame : DataFrame object creation using constructor |
| 1069 | + dtype), list of tuples, dict, or DataFrame. |
| 1070 | + DataFrame : DataFrame object creation using constructor. |
1071 | 1071 |
|
1072 | 1072 | Examples
|
1073 | 1073 | --------
|
@@ -1484,9 +1484,9 @@ def to_records(self, index=True, convert_datetime64=None):
|
1484 | 1484 |
|
1485 | 1485 | See Also
|
1486 | 1486 | --------
|
1487 |
| - DataFrame.from_records: convert structured or record ndarray |
| 1487 | + DataFrame.from_records: Convert structured or record ndarray |
1488 | 1488 | to DataFrame.
|
1489 |
| - numpy.recarray: ndarray that allows field access using |
| 1489 | + numpy.recarray: An ndarray that allows field access using |
1490 | 1490 | attributes, analogous to typed columns in a
|
1491 | 1491 | spreadsheet.
|
1492 | 1492 |
|
@@ -1900,9 +1900,10 @@ def to_stata(self, fname, convert_dates=None, write_index=True,
|
1900 | 1900 |
|
1901 | 1901 | See Also
|
1902 | 1902 | --------
|
1903 |
| - pandas.read_stata : Import Stata data files |
1904 |
| - pandas.io.stata.StataWriter : low-level writer for Stata data files |
1905 |
| - pandas.io.stata.StataWriter117 : low-level writer for version 117 files |
| 1903 | + pandas.read_stata : Import Stata data files. |
| 1904 | + pandas.io.stata.StataWriter : Low-level writer for Stata data files. |
| 1905 | + pandas.io.stata.StataWriter117 : Low-level writer for version 117 |
| 1906 | + files. |
1906 | 1907 |
|
1907 | 1908 | Examples
|
1908 | 1909 | --------
|
@@ -3729,9 +3730,9 @@ def drop(self, labels=None, axis=0, index=None, columns=None,
|
3729 | 3730 | --------
|
3730 | 3731 | DataFrame.loc : Label-location based indexer for selection by label.
|
3731 | 3732 | DataFrame.dropna : Return DataFrame with labels on given axis omitted
|
3732 |
| - where (all or any) data are missing |
| 3733 | + where (all or any) data are missing. |
3733 | 3734 | DataFrame.drop_duplicates : Return DataFrame with duplicate rows
|
3734 |
| - removed, optionally only considering certain columns |
| 3735 | + removed, optionally only considering certain columns. |
3735 | 3736 | Series.drop : Return Series with specified index labels removed.
|
3736 | 3737 |
|
3737 | 3738 | Raises
|
@@ -4683,7 +4684,7 @@ def nlargest(self, n, columns, keep='first'):
|
4683 | 4684 | --------
|
4684 | 4685 | DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in
|
4685 | 4686 | ascending order.
|
4686 |
| - DataFrame.sort_values : Sort DataFrame by the values |
| 4687 | + DataFrame.sort_values : Sort DataFrame by the values. |
4687 | 4688 | DataFrame.head : Return the first `n` rows without re-ordering.
|
4688 | 4689 |
|
4689 | 4690 | Notes
|
@@ -5070,7 +5071,7 @@ def combine(self, other, func, fill_value=None, overwrite=True):
|
5070 | 5071 | See Also
|
5071 | 5072 | --------
|
5072 | 5073 | DataFrame.combine_first : Combine two DataFrame objects and default to
|
5073 |
| - non-null values in frame calling the method |
| 5074 | + non-null values in frame calling the method. |
5074 | 5075 | """
|
5075 | 5076 | other_idxlen = len(other.index) # save for compare
|
5076 | 5077 |
|
@@ -5176,7 +5177,7 @@ def combine_first(self, other):
|
5176 | 5177 | See Also
|
5177 | 5178 | --------
|
5178 | 5179 | DataFrame.combine : Perform series-wise operation on two DataFrames
|
5179 |
| - using a given function |
| 5180 | + using a given function. |
5180 | 5181 | """
|
5181 | 5182 | import pandas.core.computation.expressions as expressions
|
5182 | 5183 |
|
@@ -5388,9 +5389,9 @@ def update(self, other, join='left', overwrite=True, filter_func=None,
|
5388 | 5389 |
|
5389 | 5390 | See Also
|
5390 | 5391 | --------
|
5391 |
| - DataFrame.pivot_table : generalization of pivot that can handle |
| 5392 | + DataFrame.pivot_table : Generalization of pivot that can handle |
5392 | 5393 | duplicate values for one index/column pair.
|
5393 |
| - DataFrame.unstack : pivot based on the index values instead of a |
| 5394 | + DataFrame.unstack : Pivot based on the index values instead of a |
5394 | 5395 | column.
|
5395 | 5396 |
|
5396 | 5397 | Notes
|
@@ -5576,8 +5577,8 @@ def pivot(self, index=None, columns=None, values=None):
|
5576 | 5577 |
|
5577 | 5578 | See Also
|
5578 | 5579 | --------
|
5579 |
| - DataFrame.pivot : pivot without aggregation that can handle |
5580 |
| - non-numeric data |
| 5580 | + DataFrame.pivot : Pivot without aggregation that can handle |
| 5581 | + non-numeric data. |
5581 | 5582 | """
|
5582 | 5583 |
|
5583 | 5584 | @Substitution('')
|
@@ -6226,9 +6227,9 @@ def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
|
6226 | 6227 |
|
6227 | 6228 | See Also
|
6228 | 6229 | --------
|
6229 |
| - DataFrame.applymap: For elementwise operations |
6230 |
| - DataFrame.aggregate: only perform aggregating type operations |
6231 |
| - DataFrame.transform: only perform transforming type operations |
| 6230 | + DataFrame.applymap: For elementwise operations. |
| 6231 | + DataFrame.aggregate: Only perform aggregating type operations. |
| 6232 | + DataFrame.transform: Only perform transforming type operations. |
6232 | 6233 |
|
6233 | 6234 | Examples
|
6234 | 6235 | --------
|
@@ -6335,7 +6336,7 @@ def applymap(self, func):
|
6335 | 6336 |
|
6336 | 6337 | See Also
|
6337 | 6338 | --------
|
6338 |
| - DataFrame.apply : Apply a function along input axis of DataFrame |
| 6339 | + DataFrame.apply : Apply a function along input axis of DataFrame. |
6339 | 6340 |
|
6340 | 6341 | Examples
|
6341 | 6342 | --------
|
@@ -6419,7 +6420,7 @@ def append(self, other, ignore_index=False,
|
6419 | 6420 | See Also
|
6420 | 6421 | --------
|
6421 | 6422 | pandas.concat : General function to concatenate DataFrame, Series
|
6422 |
| - or Panel objects |
| 6423 | + or Panel objects. |
6423 | 6424 |
|
6424 | 6425 | Examples
|
6425 | 6426 | --------
|
@@ -6886,10 +6887,10 @@ def cov(self, min_periods=None):
|
6886 | 6887 |
|
6887 | 6888 | See Also
|
6888 | 6889 | --------
|
6889 |
| - pandas.Series.cov : compute covariance with another Series |
6890 |
| - pandas.core.window.EWM.cov: exponential weighted sample covariance |
6891 |
| - pandas.core.window.Expanding.cov : expanding sample covariance |
6892 |
| - pandas.core.window.Rolling.cov : rolling sample covariance |
| 6890 | + pandas.Series.cov : Compute covariance with another Series. |
| 6891 | + pandas.core.window.EWM.cov: Exponential weighted sample covariance. |
| 6892 | + pandas.core.window.Expanding.cov : Expanding sample covariance. |
| 6893 | + pandas.core.window.Rolling.cov : Rolling sample covariance. |
6893 | 6894 |
|
6894 | 6895 | Notes
|
6895 | 6896 | -----
|
@@ -7046,11 +7047,11 @@ def count(self, axis=0, level=None, numeric_only=False):
|
7046 | 7047 |
|
7047 | 7048 | See Also
|
7048 | 7049 | --------
|
7049 |
| - Series.count: number of non-NA elements in a Series |
7050 |
| - DataFrame.shape: number of DataFrame rows and columns (including NA |
7051 |
| - elements) |
7052 |
| - DataFrame.isna: boolean same-sized DataFrame showing places of NA |
7053 |
| - elements |
| 7050 | + Series.count: Number of non-NA elements in a Series. |
| 7051 | + DataFrame.shape: Number of DataFrame rows and columns (including NA |
| 7052 | + elements). |
| 7053 | + DataFrame.isna: Boolean same-sized DataFrame showing places of NA |
| 7054 | + elements. |
7054 | 7055 |
|
7055 | 7056 | Examples
|
7056 | 7057 | --------
|
|
0 commit comments