@@ -899,7 +899,6 @@ def to_numpy(self, dtype=None, copy=False):
899
899
``to_numpy()`` will return a NumPy array and the categorical dtype
900
900
will be lost.
901
901
902
-
903
902
For NumPy dtypes, this will be a reference to the actual data stored
904
903
in this Series or Index (assuming ``copy=False``). Modifying the result
905
904
in place will modify the data stored in the Series or Index (not that
@@ -910,7 +909,7 @@ def to_numpy(self, dtype=None, copy=False):
910
909
expensive. When you need a no-copy reference to the underlying data,
911
910
:attr:`Series.array` should be used instead.
912
911
913
- This table lays out the different dtypes and return types of
912
+ This table lays out the different dtypes and default return types of
914
913
``to_numpy()`` for various dtypes within pandas.
915
914
916
915
================== ================================
@@ -920,6 +919,7 @@ def to_numpy(self, dtype=None, copy=False):
920
919
period ndarray[object] (Periods)
921
920
interval ndarray[object] (Intervals)
922
921
IntegerNA ndarray[object]
922
+ datetime64[ns] datetime64[ns]
923
923
datetime64[ns, tz] ndarray[object] (Timestamps)
924
924
================== ================================
925
925
0 commit comments