jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
If "linear"
, the placement of the ticks is determined by a starting position tick0
and a tick step dtick
import plotly.graph_objects as go
fig = go.Figure(go.Scatter(
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9]
))
fig.update_layout(
xaxis = dict(
tickmode = 'linear',
tick0 = 0.5,
dtick = 0.75
)
)
fig.show()
If "array"
, the placement of the ticks is set via tickvals
and the tick text is ticktext
.
import plotly.graph_objects as go
fig = go.Figure(go.Scatter(
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9]
))
fig.update_layout(
xaxis = dict(
tickmode = 'array',
tickvals = [1, 3, 5, 7, 9, 11],
ticktext = ['One', 'Three', 'Five', 'Seven', 'Nine', 'Eleven']
)
)
fig.show()
For more formatting types, see: https://github.com/d3/d3-format/blob/master/README.md#locale_format
import plotly.graph_objects as go
fig = go.Figure(go.Scatter(
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9]
))
fig.update_layout(yaxis_tickformat = '%')
fig.show()
For more date/time formatting types, see: https://github.com/d3/d3-time-format/blob/master/README.md
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
fig = go.Figure(go.Scatter(
x = df['Date'],
y = df['AAPL.High'],
))
fig.update_layout(
title = 'Time Series with Custom Date-Time Format',
xaxis_tickformat = '%d %B (%a)<br>%Y'
)
fig.show()
import plotly.graph_objects as go
fig = go.Figure(go.Scatter(
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
y = [68000, 52000, 60000, 20000, 95000, 40000, 60000, 79000, 74000, 42000, 20000, 90000]
))
fig.update_layout(
yaxis = dict(
showexponent = 'all',
exponentformat = 'e'
)
)
fig.show()
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
fig = go.Figure(go.Scatter(
x = df['Date'],
y = df['mavg']
))
fig.update_layout(
xaxis_tickformatstops = [
dict(dtickrange=[None, 1000], value="%H:%M:%S.%L ms"),
dict(dtickrange=[1000, 60000], value="%H:%M:%S s"),
dict(dtickrange=[60000, 3600000], value="%H:%M m"),
dict(dtickrange=[3600000, 86400000], value="%H:%M h"),
dict(dtickrange=[86400000, 604800000], value="%e. %b d"),
dict(dtickrange=[604800000, "M1"], value="%e. %b w"),
dict(dtickrange=["M1", "M12"], value="%b '%y M"),
dict(dtickrange=["M12", None], value="%Y Y")
]
)
fig.show()
import plotly.graph_objects as go
fig = go.Figure(go.Bar(
x = ["apples", "oranges", "pears"],
y = [1, 2, 3]
))
fig.update_xaxes(
showgrid=True,
ticks="outside",
tickson="boundaries",
ticklen=20
)
fig.show()
See https://plotly.com/python/reference/layout/xaxis/ for more information and chart attribute options!