|
| 1 | +""" |
| 2 | +Conway's Game of Life implemented in Python. |
| 3 | +https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life |
| 4 | +""" |
| 5 | + |
| 6 | +from __future__ import annotations |
| 7 | + |
| 8 | +from typing import List |
| 9 | + |
| 10 | +from PIL import Image |
| 11 | + |
| 12 | +# Define glider example |
| 13 | +GLIDER = [ |
| 14 | + [0, 1, 0, 0, 0, 0, 0, 0], |
| 15 | + [0, 0, 1, 0, 0, 0, 0, 0], |
| 16 | + [1, 1, 1, 0, 0, 0, 0, 0], |
| 17 | + [0, 0, 0, 0, 0, 0, 0, 0], |
| 18 | + [0, 0, 0, 0, 0, 0, 0, 0], |
| 19 | + [0, 0, 0, 0, 0, 0, 0, 0], |
| 20 | + [0, 0, 0, 0, 0, 0, 0, 0], |
| 21 | + [0, 0, 0, 0, 0, 0, 0, 0], |
| 22 | +] |
| 23 | + |
| 24 | +# Define blinker example |
| 25 | +BLINKER = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] |
| 26 | + |
| 27 | + |
| 28 | +def new_generation(cells: List[List[int]]) -> List[List[int]]: |
| 29 | + """ |
| 30 | + Generates the next generation for a given state of Conway's Game of Life. |
| 31 | + >>> new_generation(BLINKER) |
| 32 | + [[0, 0, 0], [1, 1, 1], [0, 0, 0]] |
| 33 | + """ |
| 34 | + next_generation = [] |
| 35 | + for i in range(len(cells)): |
| 36 | + next_generation_row = [] |
| 37 | + for j in range(len(cells[i])): |
| 38 | + # Get the number of live neighbours |
| 39 | + neighbour_count = 0 |
| 40 | + if i > 0 and j > 0: |
| 41 | + neighbour_count += cells[i - 1][j - 1] |
| 42 | + if i > 0: |
| 43 | + neighbour_count += cells[i - 1][j] |
| 44 | + if i > 0 and j < len(cells[i]) - 1: |
| 45 | + neighbour_count += cells[i - 1][j + 1] |
| 46 | + if j > 0: |
| 47 | + neighbour_count += cells[i][j - 1] |
| 48 | + if j < len(cells[i]) - 1: |
| 49 | + neighbour_count += cells[i][j + 1] |
| 50 | + if i < len(cells) - 1 and j > 0: |
| 51 | + neighbour_count += cells[i + 1][j - 1] |
| 52 | + if i < len(cells) - 1: |
| 53 | + neighbour_count += cells[i + 1][j] |
| 54 | + if i < len(cells) - 1 and j < len(cells[i]) - 1: |
| 55 | + neighbour_count += cells[i + 1][j + 1] |
| 56 | + |
| 57 | + # Rules of the game of life (excerpt from Wikipedia): |
| 58 | + # 1. Any live cell with two or three live neighbours survives. |
| 59 | + # 2. Any dead cell with three live neighbours becomes a live cell. |
| 60 | + # 3. All other live cells die in the next generation. |
| 61 | + # Similarly, all other dead cells stay dead. |
| 62 | + alive = cells[i][j] == 1 |
| 63 | + if ( |
| 64 | + (alive and 2 <= neighbour_count <= 3) |
| 65 | + or not alive |
| 66 | + and neighbour_count == 3 |
| 67 | + ): |
| 68 | + next_generation_row.append(1) |
| 69 | + else: |
| 70 | + next_generation_row.append(0) |
| 71 | + |
| 72 | + next_generation.append(next_generation_row) |
| 73 | + return next_generation |
| 74 | + |
| 75 | + |
| 76 | +def generate_images(cells: list[list[int]], frames) -> list[Image.Image]: |
| 77 | + """ |
| 78 | + Generates a list of images of subsequent Game of Life states. |
| 79 | + """ |
| 80 | + images = [] |
| 81 | + for _ in range(frames): |
| 82 | + # Create output image |
| 83 | + img = Image.new("RGB", (len(cells[0]), len(cells))) |
| 84 | + pixels = img.load() |
| 85 | + |
| 86 | + # Save cells to image |
| 87 | + for x in range(len(cells)): |
| 88 | + for y in range(len(cells[0])): |
| 89 | + colour = 255 - cells[y][x] * 255 |
| 90 | + pixels[x, y] = (colour, colour, colour) |
| 91 | + |
| 92 | + # Save image |
| 93 | + images.append(img) |
| 94 | + cells = new_generation(cells) |
| 95 | + return images |
| 96 | + |
| 97 | + |
| 98 | +if __name__ == "__main__": |
| 99 | + images = generate_images(GLIDER, 16) |
| 100 | + images[0].save("out.gif", save_all=True, append_images=images[1:]) |
0 commit comments