Skip to content

Commit 1981b67

Browse files
topper-123jorisvandenbossche
authored andcommitted
DOC: Cleaned references to pandas <v0.12 in docs (pandas-dev#17375)
1 parent 8351f86 commit 1981b67

File tree

8 files changed

+22
-37
lines changed

8 files changed

+22
-37
lines changed

doc/source/basics.rst

+4-4
Original file line numberDiff line numberDiff line change
@@ -251,8 +251,8 @@ replace NaN with some other value using ``fillna`` if you wish).
251251
Flexible Comparisons
252252
~~~~~~~~~~~~~~~~~~~~
253253

254-
Starting in v0.8, pandas introduced binary comparison methods eq, ne, lt, gt,
255-
le, and ge to Series and DataFrame whose behavior is analogous to the binary
254+
Series and DataFrame have the binary comparison methods ``eq``, ``ne``, ``lt``, ``gt``,
255+
``le``, and ``ge`` whose behavior is analogous to the binary
256256
arithmetic operations described above:
257257

258258
.. ipython:: python
@@ -1908,7 +1908,7 @@ each type in a ``DataFrame``:
19081908
19091909
dft.get_dtype_counts()
19101910
1911-
Numeric dtypes will propagate and can coexist in DataFrames (starting in v0.11.0).
1911+
Numeric dtypes will propagate and can coexist in DataFrames.
19121912
If a dtype is passed (either directly via the ``dtype`` keyword, a passed ``ndarray``,
19131913
or a passed ``Series``, then it will be preserved in DataFrame operations. Furthermore,
19141914
different numeric dtypes will **NOT** be combined. The following example will give you a taste.
@@ -2137,7 +2137,7 @@ gotchas
21372137
~~~~~~~
21382138

21392139
Performing selection operations on ``integer`` type data can easily upcast the data to ``floating``.
2140-
The dtype of the input data will be preserved in cases where ``nans`` are not introduced (starting in 0.11.0)
2140+
The dtype of the input data will be preserved in cases where ``nans`` are not introduced.
21412141
See also :ref:`Support for integer NA <gotchas.intna>`
21422142

21432143
.. ipython:: python

doc/source/dsintro.rst

+5-8
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@ index is passed, one will be created having values ``[0, ..., len(data) - 1]``.
7373
7474
.. note::
7575

76-
Starting in v0.8.0, pandas supports non-unique index values. If an operation
76+
pandas supports non-unique index values. If an operation
7777
that does not support duplicate index values is attempted, an exception
7878
will be raised at that time. The reason for being lazy is nearly all performance-based
7979
(there are many instances in computations, like parts of GroupBy, where the index
@@ -698,7 +698,7 @@ DataFrame in tabular form, though it won't always fit the console width:
698698
699699
print(baseball.iloc[-20:, :12].to_string())
700700
701-
New since 0.10.0, wide DataFrames will now be printed across multiple rows by
701+
Wide DataFrames will be printed across multiple rows by
702702
default:
703703

704704
.. ipython:: python
@@ -845,19 +845,16 @@ DataFrame objects with mixed-type columns, all of the data will get upcasted to
845845
846846
.. note::
847847

848-
Unfortunately Panel, being less commonly used than Series and DataFrame,
848+
Panel, being less commonly used than Series and DataFrame,
849849
has been slightly neglected feature-wise. A number of methods and options
850-
available in DataFrame are not available in Panel. This will get worked
851-
on, of course, in future releases. And faster if you join me in working on
852-
the codebase.
850+
available in DataFrame are not available in Panel.
853851

854852
.. _dsintro.to_panel:
855853

856854
From DataFrame using ``to_panel`` method
857855
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
858856

859-
This method was introduced in v0.7 to replace ``LongPanel.to_long``, and converts
860-
a DataFrame with a two-level index to a Panel.
857+
``to_panel`` converts a DataFrame with a two-level index to a Panel.
861858

862859
.. ipython:: python
863860
:okwarning:

doc/source/groupby.rst

+1-3
Original file line numberDiff line numberDiff line change
@@ -140,7 +140,7 @@ columns:
140140

141141
In [5]: grouped = df.groupby(get_letter_type, axis=1)
142142

143-
Starting with 0.8, pandas Index objects now support duplicate values. If a
143+
pandas Index objects support duplicate values. If a
144144
non-unique index is used as the group key in a groupby operation, all values
145145
for the same index value will be considered to be in one group and thus the
146146
output of aggregation functions will only contain unique index values:
@@ -288,8 +288,6 @@ chosen level:
288288
289289
s.sum(level='second')
290290
291-
.. versionadded:: 0.6
292-
293291
Grouping with multiple levels is supported.
294292

295293
.. ipython:: python

doc/source/indexing.rst

-2
Original file line numberDiff line numberDiff line change
@@ -66,8 +66,6 @@ See the :ref:`cookbook<cookbook.selection>` for some advanced strategies
6666
Different Choices for Indexing
6767
------------------------------
6868

69-
.. versionadded:: 0.11.0
70-
7169
Object selection has had a number of user-requested additions in order to
7270
support more explicit location based indexing. Pandas now supports three types
7371
of multi-axis indexing.

doc/source/io.rst

+7-7
Original file line numberDiff line numberDiff line change
@@ -364,7 +364,7 @@ warn_bad_lines : boolean, default ``True``
364364
Specifying column data types
365365
''''''''''''''''''''''''''''
366366

367-
Starting with v0.10, you can indicate the data type for the whole DataFrame or
367+
You can indicate the data type for the whole DataFrame or
368368
individual columns:
369369

370370
.. ipython:: python
@@ -3346,7 +3346,7 @@ Read/Write API
33463346
''''''''''''''
33473347

33483348
``HDFStore`` supports an top-level API using ``read_hdf`` for reading and ``to_hdf`` for writing,
3349-
similar to how ``read_csv`` and ``to_csv`` work. (new in 0.11.0)
3349+
similar to how ``read_csv`` and ``to_csv`` work.
33503350

33513351
.. ipython:: python
33523352
@@ -3791,7 +3791,7 @@ indexed dimension as the ``where``.
37913791

37923792
.. note::
37933793

3794-
Indexes are automagically created (starting ``0.10.1``) on the indexables
3794+
Indexes are automagically created on the indexables
37953795
and any data columns you specify. This behavior can be turned off by passing
37963796
``index=False`` to ``append``.
37973797

@@ -3878,7 +3878,7 @@ create a new table!)
38783878
Iterator
38793879
++++++++
38803880

3881-
Starting in ``0.11.0``, you can pass, ``iterator=True`` or ``chunksize=number_in_a_chunk``
3881+
You can pass ``iterator=True`` or ``chunksize=number_in_a_chunk``
38823882
to ``select`` and ``select_as_multiple`` to return an iterator on the results.
38833883
The default is 50,000 rows returned in a chunk.
38843884

@@ -3986,8 +3986,8 @@ of rows in an object.
39863986
Multiple Table Queries
39873987
++++++++++++++++++++++
39883988

3989-
New in 0.10.1 are the methods ``append_to_multiple`` and
3990-
``select_as_multiple``, that can perform appending/selecting from
3989+
The methods ``append_to_multiple`` and
3990+
``select_as_multiple`` can perform appending/selecting from
39913991
multiple tables at once. The idea is to have one table (call it the
39923992
selector table) that you index most/all of the columns, and perform your
39933993
queries. The other table(s) are data tables with an index matching the
@@ -4291,7 +4291,7 @@ Pass ``min_itemsize`` on the first table creation to a-priori specify the minimu
42914291
``min_itemsize`` can be an integer, or a dict mapping a column name to an integer. You can pass ``values`` as a key to
42924292
allow all *indexables* or *data_columns* to have this min_itemsize.
42934293

4294-
Starting in 0.11.0, passing a ``min_itemsize`` dict will cause all passed columns to be created as *data_columns* automatically.
4294+
Passing a ``min_itemsize`` dict will cause all passed columns to be created as *data_columns* automatically.
42954295

42964296
.. note::
42974297

doc/source/missing_data.rst

+4-5
Original file line numberDiff line numberDiff line change
@@ -67,9 +67,8 @@ arise and we wish to also consider that "missing" or "not available" or "NA".
6767

6868
.. note::
6969

70-
Prior to version v0.10.0 ``inf`` and ``-inf`` were also
71-
considered to be "NA" in computations. This is no longer the case by
72-
default; use the ``mode.use_inf_as_na`` option to recover it.
70+
If you want to consider ``inf`` and ``-inf`` to be "NA" in computations,
71+
you can set ``pandas.options.mode.use_inf_as_na = True``.
7372

7473
.. _missing.isna:
7574

@@ -485,8 +484,8 @@ respectively:
485484

486485
Replacing Generic Values
487486
~~~~~~~~~~~~~~~~~~~~~~~~
488-
Often times we want to replace arbitrary values with other values. New in v0.8
489-
is the ``replace`` method in Series/DataFrame that provides an efficient yet
487+
Often times we want to replace arbitrary values with other values. The
488+
``replace`` method in Series/DataFrame provides an efficient yet
490489
flexible way to perform such replacements.
491490

492491
For a Series, you can replace a single value or a list of values by another

doc/source/timeseries.rst

+1-2
Original file line numberDiff line numberDiff line change
@@ -1069,8 +1069,7 @@ Offset Aliases
10691069
~~~~~~~~~~~~~~
10701070

10711071
A number of string aliases are given to useful common time series
1072-
frequencies. We will refer to these aliases as *offset aliases*
1073-
(referred to as *time rules* prior to v0.8.0).
1072+
frequencies. We will refer to these aliases as *offset aliases*.
10741073

10751074
.. csv-table::
10761075
:header: "Alias", "Description"

doc/source/visualization.rst

-6
Original file line numberDiff line numberDiff line change
@@ -306,8 +306,6 @@ subplots:
306306
df.diff().hist(color='k', alpha=0.5, bins=50)
307307
308308
309-
.. versionadded:: 0.10.0
310-
311309
The ``by`` keyword can be specified to plot grouped histograms:
312310

313311
.. ipython:: python
@@ -831,8 +829,6 @@ and take a :class:`Series` or :class:`DataFrame` as an argument.
831829
Scatter Matrix Plot
832830
~~~~~~~~~~~~~~~~~~~
833831

834-
.. versionadded:: 0.7.3
835-
836832
You can create a scatter plot matrix using the
837833
``scatter_matrix`` method in ``pandas.plotting``:
838834

@@ -859,8 +855,6 @@ You can create a scatter plot matrix using the
859855
Density Plot
860856
~~~~~~~~~~~~
861857

862-
.. versionadded:: 0.8.0
863-
864858
You can create density plots using the :meth:`Series.plot.kde` and :meth:`DataFrame.plot.kde` methods.
865859

866860
.. ipython:: python

0 commit comments

Comments
 (0)