forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpooling_functions.py
109 lines (92 loc) · 3.45 KB
/
pooling_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Source : https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
# Importing the libraries
import numpy as np
from PIL import Image
# Maxpooling Function
def maxpooling(arr:list, size:int, stride:int) -> list:
"""
This function is used to perform maxpooling on the input array of 2D matrix(image)
Args:
arr: numpy array
size: size of pooling matrix
stride: the number of pixels shifts over the input matrix
Returns:
numpy array of maxpooled matrix
"""
if arr.shape[0] != arr.shape[1]:
raise ValueError("The input array is not a square matrix")
i = 0
j = 0
# compute the shape of the output matrix
maxpool_shape = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
updated_arr = np.zeros((maxpool_shape, maxpool_shape))
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
updated_arr[i][j] = np.max(arr[i:i + size, j:j + size])
# shift the pooling matrix by stride of column pixels
j += stride
# shift the pooling matrix by stride of row pixels
i += stride
# reset the column index to 0
j = 0
return updated_arr
# Averagepooling Function
def avgpooling(arr:list, size:int, stride:int) -> list:
"""
This function is used to perform avgpooling on the input array of 2D matrix(image)
Args:
arr: numpy array
size: size of pooling matrix
stride: the number of pixels shifts over the input matrix
Returns:
numpy array of avgpooled matrix
"""
if arr.shape[0] != arr.shape[1]:
raise ValueError("The input array is not a square matrix")
i = 0
j = 0
# compute the shape of the output matrix
avgpool_shape = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
updated_arr = np.zeros((avgpool_shape, avgpool_shape))
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
updated_arr[i][j] = int(np.average(arr[i:i + size, j:j + size]))
# shift the pooling matrix by stride of column pixels
j += stride
# shift the pooling matrix by stride of row pixels
i += stride
# reset the column index to 0
j = 0
return updated_arr
# Main Function
if __name__ == "__main__":
# Loading the image
image = Image.open("path_to_image")
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
# Parameters
size = 3
stride = 2
Image.fromarray(maxpooling(np.array(image), size, stride)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
# Parameters
size = 3
stride = 2
Image.fromarray(avgpooling(np.array(image), size, stride)).show()