We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 32a5206 commit 32091d3Copy full SHA for 32091d3
machine_learning/xgboostclassifier.py
@@ -24,7 +24,16 @@ def data_handling(data: dict) -> tuple:
24
def xgboost(features: np.ndarray, target: np.ndarray) -> XGBClassifier:
25
"""
26
>>> xgboost(np.array([[5.1, 3.6, 1.4, 0.2]]), np.array([0]))
27
- XGBClassifier()
+ XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,
28
+ colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,
29
+ early_stopping_rounds=None, enable_categorical=False,
30
+ eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwise',
31
+ importance_type=None, interaction_constraints='',
32
+ learning_rate=0.300000012, max_bin=256, max_cat_to_onehot=4,
33
+ max_delta_step=0, max_depth=6, max_leaves=0, min_child_weight=1,
34
+ missing=nan, monotone_constraints='()', n_estimators=100,
35
+ n_jobs=0, num_parallel_tree=1, predictor='auto', random_state=0,
36
+ reg_alpha=0, reg_lambda=1)
37
38
classifier = XGBClassifier()
39
classifier.fit(features, target)
0 commit comments