The rustc
compiler has certain pluggable operations, that is,
functionality that isn't hard-coded into the language, but is
implemented in libraries, with a special marker to tell the compiler
it exists. The marker is the attribute #[lang = "..."]
and there are
various different values of ...
, i.e. various different 'lang
items'.
Many such lang items can be implemented only in one sensible way, such as
add
(trait core::ops::Add
) or future_trait
(trait core::future::Future
).
Others can be overriden to achieve some specific goals.
For example, later sections describe how to control your binary startup or override panic implementation.
Features provided by lang items include:
- overloadable operators via traits: the traits corresponding to the
==
,<
, dereferencing (*
) and+
(etc.) operators are all marked with lang items; those specific four areeq
,ord
,deref
, andadd
respectively. - stack unwinding and general failure; the
eh_personality
,panic
andpanic_bounds_checks
lang items. - the traits in
std::marker
used to indicate types of various kinds; lang itemssend
,sync
andcopy
. - the special marker types used for variance indicators found in
core::marker
; lang itemphantom_data
.
Lang items are loaded lazily by the compiler; e.g. if one never uses
Box
then there is no need to define functions for exchange_malloc
and box_free
. rustc
will emit an error when an item is needed
but not found in the current crate or any that it depends on.
Most lang items are defined by libcore
, but if you're trying to build
an executable without the standard library, you'll run into the need
for lang items. The rest of this page focuses on this use-case, even though
lang items are a bit broader than that.
In order to build a #[no_std]
executable we will need libc as a dependency.
We can specify this using our Cargo.toml
file:
[dependencies]
libc = { version = "0.2.14", default-features = false }
Note that the default features have been disabled. This is a critical step - the default features of libc include the standard library and so must be disabled.
Controlling the entry point is possible in two ways: the #[start]
attribute,
or overriding the default shim for the C main
function with your own.
The function marked #[start]
is passed the command line parameters
in the same format as C:
#![feature(lang_items, core_intrinsics)]
#![feature(start)]
#![no_std]
use core::intrinsics;
use core::panic::PanicInfo;
// Pull in the system libc library for what crt0.o likely requires.
extern crate libc;
// Entry point for this program.
#[start]
fn start(_argc: isize, _argv: *const *const u8) -> isize {
0
}
// These functions are used by the compiler, but not
// for a bare-bones hello world. These are normally
// provided by libstd.
#[lang = "eh_personality"]
#[no_mangle]
pub extern fn rust_eh_personality() {
}
#[lang = "panic_impl"]
#[no_mangle]
pub extern fn rust_begin_panic(info: &PanicInfo) -> ! {
unsafe { intrinsics::abort() }
}
To override the compiler-inserted main
shim, one has to disable it
with #![no_main]
and then create the appropriate symbol with the
correct ABI and the correct name, which requires overriding the
compiler's name mangling too:
#![feature(lang_items, core_intrinsics)]
#![feature(start)]
#![no_std]
#![no_main]
use core::intrinsics;
use core::panic::PanicInfo;
// Pull in the system libc library for what crt0.o likely requires.
extern crate libc;
// Entry point for this program.
#[no_mangle] // ensure that this symbol is called `main` in the output
pub extern fn main(_argc: i32, _argv: *const *const u8) -> i32 {
0
}
// These functions are used by the compiler, but not
// for a bare-bones hello world. These are normally
// provided by libstd.
#[lang = "eh_personality"]
#[no_mangle]
pub extern fn rust_eh_personality() {
}
#[lang = "panic_impl"]
#[no_mangle]
pub extern fn rust_begin_panic(info: &PanicInfo) -> ! {
unsafe { intrinsics::abort() }
}
In many cases, you may need to manually link to the compiler_builtins
crate
when building a no_std
binary. You may observe this via linker error messages
such as "undefined reference to `__rust_probestack'
".
The compiler currently makes a few assumptions about symbols which are available in the executable to call. Normally these functions are provided by the standard library, but without it you must define your own. These symbols are called "language items", and they each have an internal name, and then a signature that an implementation must conform to.
The first of these functions, rust_eh_personality
, is used by the failure
mechanisms of the compiler. This is often mapped to GCC's personality function
(see the libstd implementation for more information), but crates
which do not trigger a panic can be assured that this function is never
called. The language item's name is eh_personality
.
The second function, rust_begin_panic
, is also used by the failure mechanisms of the
compiler. When a panic happens, this controls the message that's displayed on
the screen. While the language item's name is panic_impl
, the symbol name is
rust_begin_panic
.
Finally, a eh_catch_typeinfo
static is needed for certain targets which
implement Rust panics on top of C++ exceptions.
In several cases compiler finds specific item not by lang
attribute. Instead
item path is hardcored. For example compiler assumes Iterator
trait to be
available as core::iter::Iterator
. This only happens when item is required
on early compilation stages (for example Iterator
is used in for loops
desugaring).
This is a list of all language items in Rust along with where they are located in the source code.
- Primitives
i8
:libcore/num/mod.rs
i16
:libcore/num/mod.rs
i32
:libcore/num/mod.rs
i64
:libcore/num/mod.rs
i128
:libcore/num/mod.rs
isize
:libcore/num/mod.rs
u8
:libcore/num/mod.rs
u16
:libcore/num/mod.rs
u32
:libcore/num/mod.rs
u64
:libcore/num/mod.rs
u128
:libcore/num/mod.rs
usize
:libcore/num/mod.rs
f32
:libstd/f32.rs
f64
:libstd/f64.rs
char
:libcore/char.rs
slice
:liballoc/slice.rs
str
:liballoc/str.rs
const_ptr
:libcore/ptr.rs
mut_ptr
:libcore/ptr.rs
- Runtime
start
:libstd/rt.rs
eh_personality
:libpanic_unwind/emcc.rs
(EMCC)eh_personality
:libpanic_unwind/gcc.rs
(GNU)eh_personality
:libpanic_unwind/seh.rs
(SEH)eh_catch_typeinfo
:libpanic_unwind/emcc.rs
(EMCC)panic
:libcore/panicking.rs
panic_bounds_check
:libcore/panicking.rs
panic_impl
:libcore/panicking.rs
panic_impl
:libstd/panicking.rs
- Allocations
owned_box
:liballoc/boxed.rs
exchange_malloc
:liballoc/heap.rs
box_free
:liballoc/heap.rs
- Operands
not
:libcore/ops/bit.rs
bitand
:libcore/ops/bit.rs
bitor
:libcore/ops/bit.rs
bitxor
:libcore/ops/bit.rs
shl
:libcore/ops/bit.rs
shr
:libcore/ops/bit.rs
bitand_assign
:libcore/ops/bit.rs
bitor_assign
:libcore/ops/bit.rs
bitxor_assign
:libcore/ops/bit.rs
shl_assign
:libcore/ops/bit.rs
shr_assign
:libcore/ops/bit.rs
deref
:libcore/ops/deref.rs
deref_mut
:libcore/ops/deref.rs
index
:libcore/ops/index.rs
index_mut
:libcore/ops/index.rs
add
:libcore/ops/arith.rs
sub
:libcore/ops/arith.rs
mul
:libcore/ops/arith.rs
div
:libcore/ops/arith.rs
rem
:libcore/ops/arith.rs
neg
:libcore/ops/arith.rs
add_assign
:libcore/ops/arith.rs
sub_assign
:libcore/ops/arith.rs
mul_assign
:libcore/ops/arith.rs
div_assign
:libcore/ops/arith.rs
rem_assign
:libcore/ops/arith.rs
eq
:libcore/cmp.rs
ord
:libcore/cmp.rs
- Functions
fn
:libcore/ops/function.rs
fn_mut
:libcore/ops/function.rs
fn_once
:libcore/ops/function.rs
generator_state
:libcore/ops/generator.rs
generator
:libcore/ops/generator.rs
- Opting out
unsafe_cell
(relaxes pointer provenance rules, allowing const-to-mut casts):libcore/cell.rs
manually_drop
(opts out of implicit destructor call):libcore/mem/manually_drop.rs
- Other
coerce_unsized
:libcore/ops/unsize.rs
drop
:libcore/ops/drop.rs
drop_in_place
:libcore/ptr.rs
clone
:libcore/clone.rs
copy
:libcore/marker.rs
send
:libcore/marker.rs
sized
:libcore/marker.rs
unsize
:libcore/marker.rs
sync
:libcore/marker.rs
phantom_data
:libcore/marker.rs
discriminant_kind
:libcore/marker.rs
freeze
:libcore/marker.rs