@@ -7247,12 +7247,15 @@ def interpolate(
7247
7247
given length of interval.
7248
7248
* 'index', 'values': use the actual numerical values of the index.
7249
7249
* 'pad': Fill in NaNs using existing values.
7250
- * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'spline',
7250
+ * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic',
7251
7251
'barycentric', 'polynomial': Passed to
7252
- `scipy.interpolate.interp1d`. These methods use the numerical
7252
+ `scipy.interpolate.interp1d`, whereas 'spline' is passed to
7253
+ `scipy.interpolate.UnivariateSpline`. These methods use the numerical
7253
7254
values of the index. Both 'polynomial' and 'spline' require that
7254
7255
you also specify an `order` (int), e.g.
7255
- ``df.interpolate(method='polynomial', order=5)``.
7256
+ ``df.interpolate(method='polynomial', order=5)``. Note that,
7257
+ `slinear` method in Pandas refers to the Scipy first order `spline`
7258
+ instead of Pandas first order `spline`.
7256
7259
* 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima',
7257
7260
'cubicspline': Wrappers around the SciPy interpolation methods of
7258
7261
similar names. See `Notes`.
0 commit comments