|
12 | 12 | from pandas import (
|
13 | 13 | CategoricalIndex,
|
14 | 14 | DataFrame,
|
15 |
| - Float64Index, |
16 |
| - Int64Index, |
| 15 | + Index, |
17 | 16 | IntervalIndex,
|
18 | 17 | MultiIndex,
|
19 | 18 | Series,
|
20 |
| - UInt64Index, |
21 | 19 | concat,
|
22 | 20 | date_range,
|
23 | 21 | option_context,
|
|
30 | 28 | class NumericSeriesIndexing:
|
31 | 29 |
|
32 | 30 | params = [
|
33 |
| - (Int64Index, UInt64Index, Float64Index), |
| 31 | + (np.int64, np.uint64, np.float64), |
34 | 32 | ("unique_monotonic_inc", "nonunique_monotonic_inc"),
|
35 | 33 | ]
|
36 |
| - param_names = ["index_dtype", "index_structure"] |
| 34 | + param_names = ["dtype", "index_structure"] |
37 | 35 |
|
38 |
| - def setup(self, index, index_structure): |
| 36 | + def setup(self, dtype, index_structure): |
39 | 37 | N = 10**6
|
40 | 38 | indices = {
|
41 |
| - "unique_monotonic_inc": index(range(N)), |
42 |
| - "nonunique_monotonic_inc": index( |
43 |
| - list(range(55)) + [54] + list(range(55, N - 1)) |
| 39 | + "unique_monotonic_inc": Index(range(N), dtype=dtype), |
| 40 | + "nonunique_monotonic_inc": Index( |
| 41 | + list(range(55)) + [54] + list(range(55, N - 1)), dtype=dtype |
44 | 42 | ),
|
45 | 43 | }
|
46 | 44 | self.data = Series(np.random.rand(N), index=indices[index_structure])
|
@@ -159,17 +157,17 @@ def time_boolean_rows_boolean(self):
|
159 | 157 | class DataFrameNumericIndexing:
|
160 | 158 |
|
161 | 159 | params = [
|
162 |
| - (Int64Index, UInt64Index, Float64Index), |
| 160 | + (np.int64, np.uint64, np.float64), |
163 | 161 | ("unique_monotonic_inc", "nonunique_monotonic_inc"),
|
164 | 162 | ]
|
165 |
| - param_names = ["index_dtype", "index_structure"] |
| 163 | + param_names = ["dtype", "index_structure"] |
166 | 164 |
|
167 |
| - def setup(self, index, index_structure): |
| 165 | + def setup(self, dtype, index_structure): |
168 | 166 | N = 10**5
|
169 | 167 | indices = {
|
170 |
| - "unique_monotonic_inc": index(range(N)), |
171 |
| - "nonunique_monotonic_inc": index( |
172 |
| - list(range(55)) + [54] + list(range(55, N - 1)) |
| 168 | + "unique_monotonic_inc": Index(range(N), dtype=dtype), |
| 169 | + "nonunique_monotonic_inc": Index( |
| 170 | + list(range(55)) + [54] + list(range(55, N - 1)), dtype=dtype |
173 | 171 | ),
|
174 | 172 | }
|
175 | 173 | self.idx_dupe = np.array(range(30)) * 99
|
@@ -201,7 +199,7 @@ class Take:
|
201 | 199 | def setup(self, index):
|
202 | 200 | N = 100000
|
203 | 201 | indexes = {
|
204 |
| - "int": Int64Index(np.arange(N)), |
| 202 | + "int": Index(np.arange(N), dtype=np.int64), |
205 | 203 | "datetime": date_range("2011-01-01", freq="S", periods=N),
|
206 | 204 | }
|
207 | 205 | index = indexes[index]
|
|
0 commit comments