forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_header.py
528 lines (456 loc) · 14.3 KB
/
test_header.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
"""
Tests that the file header is properly handled or inferred
during parsing for all of the parsers defined in parsers.py
"""
from collections import namedtuple
from io import StringIO
import numpy as np
import pytest
from pandas.errors import ParserError
from pandas import DataFrame, Index, MultiIndex
import pandas.util.testing as tm
def test_read_with_bad_header(all_parsers):
parser = all_parsers
msg = r"but only \d+ lines in file"
with pytest.raises(ValueError, match=msg):
s = StringIO(",,")
parser.read_csv(s, header=[10])
def test_negative_header(all_parsers):
# see gh-27779
parser = all_parsers
data = """1,2,3,4,5
6,7,8,9,10
11,12,13,14,15
"""
with pytest.raises(
ValueError,
match="Passing -1 to header is invalid. "
"For no header, use header=None instead",
):
parser.read_csv(StringIO(data), header=-1)
@pytest.mark.parametrize("header", [True, False])
def test_bool_header_arg(all_parsers, header):
# see gh-6114
parser = all_parsers
data = """\
MyColumn
a
b
a
b"""
msg = "Passing a bool to header is invalid"
with pytest.raises(TypeError, match=msg):
parser.read_csv(StringIO(data), header=header)
def test_no_header_prefix(all_parsers):
parser = all_parsers
data = """1,2,3,4,5
6,7,8,9,10
11,12,13,14,15
"""
result = parser.read_csv(StringIO(data), prefix="Field", header=None)
expected = DataFrame(
[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]],
columns=["Field0", "Field1", "Field2", "Field3", "Field4"],
)
tm.assert_frame_equal(result, expected)
def test_header_with_index_col(all_parsers):
parser = all_parsers
data = """foo,1,2,3
bar,4,5,6
baz,7,8,9
"""
names = ["A", "B", "C"]
result = parser.read_csv(StringIO(data), names=names)
expected = DataFrame(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
index=["foo", "bar", "baz"],
columns=["A", "B", "C"],
)
tm.assert_frame_equal(result, expected)
def test_header_not_first_line(all_parsers):
parser = all_parsers
data = """got,to,ignore,this,line
got,to,ignore,this,line
index,A,B,C,D
foo,2,3,4,5
bar,7,8,9,10
baz,12,13,14,15
"""
data2 = """index,A,B,C,D
foo,2,3,4,5
bar,7,8,9,10
baz,12,13,14,15
"""
result = parser.read_csv(StringIO(data), header=2, index_col=0)
expected = parser.read_csv(StringIO(data2), header=0, index_col=0)
tm.assert_frame_equal(result, expected)
def test_header_multi_index(all_parsers):
parser = all_parsers
expected = tm.makeCustomDataframe(5, 3, r_idx_nlevels=2, c_idx_nlevels=4)
data = """\
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,,
R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2
R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2
R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2
R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2
"""
result = parser.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"kwargs,msg",
[
(
dict(index_col=["foo", "bar"]),
(
"index_col must only contain "
"row numbers when specifying "
"a multi-index header"
),
),
(
dict(index_col=[0, 1], names=["foo", "bar"]),
("cannot specify names when specifying a multi-index header"),
),
(
dict(index_col=[0, 1], usecols=["foo", "bar"]),
("cannot specify usecols when specifying a multi-index header"),
),
],
)
def test_header_multi_index_invalid(all_parsers, kwargs, msg):
data = """\
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,,
R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2
R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2
R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2
R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2
"""
parser = all_parsers
with pytest.raises(ValueError, match=msg):
parser.read_csv(StringIO(data), header=[0, 1, 2, 3], **kwargs)
_TestTuple = namedtuple("names", ["first", "second"])
@pytest.mark.parametrize(
"kwargs",
[
dict(header=[0, 1]),
dict(
skiprows=3,
names=[
("a", "q"),
("a", "r"),
("a", "s"),
("b", "t"),
("c", "u"),
("c", "v"),
],
),
dict(
skiprows=3,
names=[
_TestTuple("a", "q"),
_TestTuple("a", "r"),
_TestTuple("a", "s"),
_TestTuple("b", "t"),
_TestTuple("c", "u"),
_TestTuple("c", "v"),
],
),
],
)
def test_header_multi_index_common_format1(all_parsers, kwargs):
parser = all_parsers
expected = DataFrame(
[[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]],
index=["one", "two"],
columns=MultiIndex.from_tuples(
[("a", "q"), ("a", "r"), ("a", "s"), ("b", "t"), ("c", "u"), ("c", "v")]
),
)
data = """,a,a,a,b,c,c
,q,r,s,t,u,v
,,,,,,
one,1,2,3,4,5,6
two,7,8,9,10,11,12"""
result = parser.read_csv(StringIO(data), index_col=0, **kwargs)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"kwargs",
[
dict(header=[0, 1]),
dict(
skiprows=2,
names=[
("a", "q"),
("a", "r"),
("a", "s"),
("b", "t"),
("c", "u"),
("c", "v"),
],
),
dict(
skiprows=2,
names=[
_TestTuple("a", "q"),
_TestTuple("a", "r"),
_TestTuple("a", "s"),
_TestTuple("b", "t"),
_TestTuple("c", "u"),
_TestTuple("c", "v"),
],
),
],
)
def test_header_multi_index_common_format2(all_parsers, kwargs):
parser = all_parsers
expected = DataFrame(
[[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]],
index=["one", "two"],
columns=MultiIndex.from_tuples(
[("a", "q"), ("a", "r"), ("a", "s"), ("b", "t"), ("c", "u"), ("c", "v")]
),
)
data = """,a,a,a,b,c,c
,q,r,s,t,u,v
one,1,2,3,4,5,6
two,7,8,9,10,11,12"""
result = parser.read_csv(StringIO(data), index_col=0, **kwargs)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"kwargs",
[
dict(header=[0, 1]),
dict(
skiprows=2,
names=[
("a", "q"),
("a", "r"),
("a", "s"),
("b", "t"),
("c", "u"),
("c", "v"),
],
),
dict(
skiprows=2,
names=[
_TestTuple("a", "q"),
_TestTuple("a", "r"),
_TestTuple("a", "s"),
_TestTuple("b", "t"),
_TestTuple("c", "u"),
_TestTuple("c", "v"),
],
),
],
)
def test_header_multi_index_common_format3(all_parsers, kwargs):
parser = all_parsers
expected = DataFrame(
[[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]],
index=["one", "two"],
columns=MultiIndex.from_tuples(
[("a", "q"), ("a", "r"), ("a", "s"), ("b", "t"), ("c", "u"), ("c", "v")]
),
)
expected = expected.reset_index(drop=True)
data = """a,a,a,b,c,c
q,r,s,t,u,v
1,2,3,4,5,6
7,8,9,10,11,12"""
result = parser.read_csv(StringIO(data), index_col=None, **kwargs)
tm.assert_frame_equal(result, expected)
def test_header_multi_index_common_format_malformed1(all_parsers):
parser = all_parsers
expected = DataFrame(
np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype="int64"),
index=Index([1, 7]),
columns=MultiIndex(
levels=[["a", "b", "c"], ["r", "s", "t", "u", "v"]],
codes=[[0, 0, 1, 2, 2], [0, 1, 2, 3, 4]],
names=["a", "q"],
),
)
data = """a,a,a,b,c,c
q,r,s,t,u,v
1,2,3,4,5,6
7,8,9,10,11,12"""
result = parser.read_csv(StringIO(data), header=[0, 1], index_col=0)
tm.assert_frame_equal(expected, result)
def test_header_multi_index_common_format_malformed2(all_parsers):
parser = all_parsers
expected = DataFrame(
np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype="int64"),
index=Index([1, 7]),
columns=MultiIndex(
levels=[["a", "b", "c"], ["r", "s", "t", "u", "v"]],
codes=[[0, 0, 1, 2, 2], [0, 1, 2, 3, 4]],
names=[None, "q"],
),
)
data = """,a,a,b,c,c
q,r,s,t,u,v
1,2,3,4,5,6
7,8,9,10,11,12"""
result = parser.read_csv(StringIO(data), header=[0, 1], index_col=0)
tm.assert_frame_equal(expected, result)
def test_header_multi_index_common_format_malformed3(all_parsers):
parser = all_parsers
expected = DataFrame(
np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype="int64"),
index=MultiIndex(levels=[[1, 7], [2, 8]], codes=[[0, 1], [0, 1]]),
columns=MultiIndex(
levels=[["a", "b", "c"], ["s", "t", "u", "v"]],
codes=[[0, 1, 2, 2], [0, 1, 2, 3]],
names=[None, "q"],
),
)
data = """,a,a,b,c,c
q,r,s,t,u,v
1,2,3,4,5,6
7,8,9,10,11,12"""
result = parser.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1])
tm.assert_frame_equal(expected, result)
@pytest.mark.parametrize(
"data,header", [("1,2,3\n4,5,6", None), ("foo,bar,baz\n1,2,3\n4,5,6", 0)]
)
def test_header_names_backward_compat(all_parsers, data, header):
# see gh-2539
parser = all_parsers
expected = parser.read_csv(StringIO("1,2,3\n4,5,6"), names=["a", "b", "c"])
result = parser.read_csv(StringIO(data), names=["a", "b", "c"], header=header)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("kwargs", [dict(), dict(index_col=False)])
def test_read_only_header_no_rows(all_parsers, kwargs):
# See gh-7773
parser = all_parsers
expected = DataFrame(columns=["a", "b", "c"])
result = parser.read_csv(StringIO("a,b,c"), **kwargs)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"kwargs,names",
[
(dict(), [0, 1, 2, 3, 4]),
(dict(prefix="X"), ["X0", "X1", "X2", "X3", "X4"]),
(
dict(names=["foo", "bar", "baz", "quux", "panda"]),
["foo", "bar", "baz", "quux", "panda"],
),
],
)
def test_no_header(all_parsers, kwargs, names):
parser = all_parsers
data = """1,2,3,4,5
6,7,8,9,10
11,12,13,14,15
"""
expected = DataFrame(
[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], columns=names
)
result = parser.read_csv(StringIO(data), header=None, **kwargs)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("header", [["a", "b"], "string_header"])
def test_non_int_header(all_parsers, header):
# see gh-16338
msg = "header must be integer or list of integers"
data = """1,2\n3,4"""
parser = all_parsers
with pytest.raises(ValueError, match=msg):
parser.read_csv(StringIO(data), header=header)
def test_singleton_header(all_parsers):
# see gh-7757
data = """a,b,c\n0,1,2\n1,2,3"""
parser = all_parsers
expected = DataFrame({"a": [0, 1], "b": [1, 2], "c": [2, 3]})
result = parser.read_csv(StringIO(data), header=[0])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"data,expected",
[
(
"A,A,A,B\none,one,one,two\n0,40,34,0.1",
DataFrame(
[[0, 40, 34, 0.1]],
columns=MultiIndex.from_tuples(
[("A", "one"), ("A", "one.1"), ("A", "one.2"), ("B", "two")]
),
),
),
(
"A,A,A,B\none,one,one.1,two\n0,40,34,0.1",
DataFrame(
[[0, 40, 34, 0.1]],
columns=MultiIndex.from_tuples(
[("A", "one"), ("A", "one.1"), ("A", "one.1.1"), ("B", "two")]
),
),
),
(
"A,A,A,B,B\none,one,one.1,two,two\n0,40,34,0.1,0.1",
DataFrame(
[[0, 40, 34, 0.1, 0.1]],
columns=MultiIndex.from_tuples(
[
("A", "one"),
("A", "one.1"),
("A", "one.1.1"),
("B", "two"),
("B", "two.1"),
]
),
),
),
],
)
def test_mangles_multi_index(all_parsers, data, expected):
# see gh-18062
parser = all_parsers
result = parser.read_csv(StringIO(data), header=[0, 1])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("index_col", [None, [0]])
@pytest.mark.parametrize(
"columns", [None, (["", "Unnamed"]), (["Unnamed", ""]), (["Unnamed", "NotUnnamed"])]
)
def test_multi_index_unnamed(all_parsers, index_col, columns):
# see gh-23687
#
# When specifying a multi-index header, make sure that
# we don't error just because one of the rows in our header
# has ALL column names containing the string "Unnamed". The
# correct condition to check is whether the row contains
# ALL columns that did not have names (and instead were given
# placeholder ones).
parser = all_parsers
header = [0, 1]
if index_col is None:
data = ",".join(columns or ["", ""]) + "\n0,1\n2,3\n4,5\n"
else:
data = ",".join([""] + (columns or ["", ""])) + "\n,0,1\n0,2,3\n1,4,5\n"
if columns is None:
msg = (
r"Passed header=\[0,1\] are too "
r"many rows for this multi_index of columns"
)
with pytest.raises(ParserError, match=msg):
parser.read_csv(StringIO(data), header=header, index_col=index_col)
else:
result = parser.read_csv(StringIO(data), header=header, index_col=index_col)
template = "Unnamed: {i}_level_0"
exp_columns = []
for i, col in enumerate(columns):
if not col: # Unnamed.
col = template.format(i=i if index_col is None else i + 1)
exp_columns.append(col)
columns = MultiIndex.from_tuples(zip(exp_columns, ["0", "1"]))
expected = DataFrame([[2, 3], [4, 5]], columns=columns)
tm.assert_frame_equal(result, expected)