forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimeseries.py
307 lines (234 loc) · 9.33 KB
/
timeseries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# TODO: Use the fact that axis can have units to simplify the process
import functools
from typing import TYPE_CHECKING, Optional
import numpy as np
from pandas._libs.tslibs.frequencies import FreqGroup, base_and_stride, get_freq_code
from pandas._libs.tslibs.period import Period
from pandas.core.dtypes.generic import (
ABCDatetimeIndex,
ABCPeriodIndex,
ABCTimedeltaIndex,
)
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.converter import (
TimeSeries_DateFormatter,
TimeSeries_DateLocator,
TimeSeries_TimedeltaFormatter,
)
import pandas.tseries.frequencies as frequencies
from pandas.tseries.frequencies import is_subperiod, is_superperiod
from pandas.tseries.offsets import DateOffset
if TYPE_CHECKING:
from pandas._typing import FrameOrSeries # noqa: F401
# ---------------------------------------------------------------------
# Plotting functions and monkey patches
def _maybe_resample(series, ax, kwargs):
# resample against axes freq if necessary
freq, ax_freq = _get_freq(ax, series)
if freq is None: # pragma: no cover
raise ValueError("Cannot use dynamic axis without frequency info")
# Convert DatetimeIndex to PeriodIndex
if isinstance(series.index, ABCDatetimeIndex):
series = series.to_period(freq=freq)
if ax_freq is not None and freq != ax_freq:
if is_superperiod(freq, ax_freq): # upsample input
series = series.copy()
series.index = series.index.asfreq(ax_freq, how="s")
freq = ax_freq
elif _is_sup(freq, ax_freq): # one is weekly
how = kwargs.pop("how", "last")
series = getattr(series.resample("D"), how)().dropna()
series = getattr(series.resample(ax_freq), how)().dropna()
freq = ax_freq
elif is_subperiod(freq, ax_freq) or _is_sub(freq, ax_freq):
_upsample_others(ax, freq, kwargs)
else: # pragma: no cover
raise ValueError("Incompatible frequency conversion")
return freq, series
def _is_sub(f1, f2):
return (f1.startswith("W") and is_subperiod("D", f2)) or (
f2.startswith("W") and is_subperiod(f1, "D")
)
def _is_sup(f1, f2):
return (f1.startswith("W") and is_superperiod("D", f2)) or (
f2.startswith("W") and is_superperiod(f1, "D")
)
def _upsample_others(ax, freq, kwargs):
legend = ax.get_legend()
lines, labels = _replot_ax(ax, freq, kwargs)
_replot_ax(ax, freq, kwargs)
other_ax = None
if hasattr(ax, "left_ax"):
other_ax = ax.left_ax
if hasattr(ax, "right_ax"):
other_ax = ax.right_ax
if other_ax is not None:
rlines, rlabels = _replot_ax(other_ax, freq, kwargs)
lines.extend(rlines)
labels.extend(rlabels)
if legend is not None and kwargs.get("legend", True) and len(lines) > 0:
title = legend.get_title().get_text()
if title == "None":
title = None
ax.legend(lines, labels, loc="best", title=title)
def _replot_ax(ax, freq, kwargs):
data = getattr(ax, "_plot_data", None)
# clear current axes and data
ax._plot_data = []
ax.clear()
_decorate_axes(ax, freq, kwargs)
lines = []
labels = []
if data is not None:
for series, plotf, kwds in data:
series = series.copy()
idx = series.index.asfreq(freq, how="S")
series.index = idx
ax._plot_data.append((series, plotf, kwds))
# for tsplot
if isinstance(plotf, str):
from pandas.plotting._matplotlib import PLOT_CLASSES
plotf = PLOT_CLASSES[plotf]._plot
lines.append(plotf(ax, series.index._mpl_repr(), series.values, **kwds)[0])
labels.append(pprint_thing(series.name))
return lines, labels
def _decorate_axes(ax, freq, kwargs):
"""Initialize axes for time-series plotting"""
if not hasattr(ax, "_plot_data"):
ax._plot_data = []
ax.freq = freq
xaxis = ax.get_xaxis()
xaxis.freq = freq
if not hasattr(ax, "legendlabels"):
ax.legendlabels = [kwargs.get("label", None)]
else:
ax.legendlabels.append(kwargs.get("label", None))
ax.view_interval = None
ax.date_axis_info = None
def _get_ax_freq(ax):
"""
Get the freq attribute of the ax object if set.
Also checks shared axes (eg when using secondary yaxis, sharex=True
or twinx)
"""
ax_freq = getattr(ax, "freq", None)
if ax_freq is None:
# check for left/right ax in case of secondary yaxis
if hasattr(ax, "left_ax"):
ax_freq = getattr(ax.left_ax, "freq", None)
elif hasattr(ax, "right_ax"):
ax_freq = getattr(ax.right_ax, "freq", None)
if ax_freq is None:
# check if a shared ax (sharex/twinx) has already freq set
shared_axes = ax.get_shared_x_axes().get_siblings(ax)
if len(shared_axes) > 1:
for shared_ax in shared_axes:
ax_freq = getattr(shared_ax, "freq", None)
if ax_freq is not None:
break
return ax_freq
def get_period_alias(freq) -> Optional[str]:
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = base_and_stride(freq)[0]
freq = frequencies.get_period_alias(freq)
return freq
def _get_freq(ax, series):
# get frequency from data
freq = getattr(series.index, "freq", None)
if freq is None:
freq = getattr(series.index, "inferred_freq", None)
ax_freq = _get_ax_freq(ax)
# use axes freq if no data freq
if freq is None:
freq = ax_freq
# get the period frequency
freq = get_period_alias(freq)
return freq, ax_freq
def _use_dynamic_x(ax, data: "FrameOrSeries") -> bool:
freq = _get_index_freq(data)
ax_freq = _get_ax_freq(ax)
if freq is None: # convert irregular if axes has freq info
freq = ax_freq
else: # do not use tsplot if irregular was plotted first
if (ax_freq is None) and (len(ax.get_lines()) > 0):
return False
if freq is None:
return False
freq = get_period_alias(freq)
# FIXME: hack this for 0.10.1, creating more technical debt...sigh
if isinstance(data.index, ABCDatetimeIndex):
base = get_freq_code(freq)[0]
x = data.index
if base <= FreqGroup.FR_DAY:
return x[:1].is_normalized
return Period(x[0], freq).to_timestamp(tz=x.tz) == x[0]
return True
def _get_index_freq(data):
freq = getattr(data.index, "freq", None)
if freq is None:
freq = getattr(data.index, "inferred_freq", None)
if freq == "B":
weekdays = np.unique(data.index.dayofweek)
if (5 in weekdays) or (6 in weekdays):
freq = None
return freq
def _maybe_convert_index(ax, data):
# tsplot converts automatically, but don't want to convert index
# over and over for DataFrames
if isinstance(data.index, (ABCDatetimeIndex, ABCPeriodIndex)):
freq = getattr(data.index, "freq", None)
if freq is None:
freq = getattr(data.index, "inferred_freq", None)
if freq is None:
freq = _get_ax_freq(ax)
if freq is None:
raise ValueError("Could not get frequency alias for plotting")
freq = get_period_alias(freq)
if isinstance(data.index, ABCDatetimeIndex):
data = data.tz_localize(None).to_period(freq=freq)
elif isinstance(data.index, ABCPeriodIndex):
data.index = data.index.asfreq(freq=freq)
return data
# Patch methods for subplot. Only format_dateaxis is currently used.
# Do we need the rest for convenience?
def _format_coord(freq, t, y):
time_period = Period(ordinal=int(t), freq=freq)
return f"t = {time_period} y = {y:8f}"
def format_dateaxis(subplot, freq, index):
"""
Pretty-formats the date axis (x-axis).
Major and minor ticks are automatically set for the frequency of the
current underlying series. As the dynamic mode is activated by
default, changing the limits of the x axis will intelligently change
the positions of the ticks.
"""
from matplotlib import pylab
# handle index specific formatting
# Note: DatetimeIndex does not use this
# interface. DatetimeIndex uses matplotlib.date directly
if isinstance(index, ABCPeriodIndex):
majlocator = TimeSeries_DateLocator(
freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
)
minlocator = TimeSeries_DateLocator(
freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
)
subplot.xaxis.set_major_locator(majlocator)
subplot.xaxis.set_minor_locator(minlocator)
majformatter = TimeSeries_DateFormatter(
freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
)
minformatter = TimeSeries_DateFormatter(
freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
)
subplot.xaxis.set_major_formatter(majformatter)
subplot.xaxis.set_minor_formatter(minformatter)
# x and y coord info
subplot.format_coord = functools.partial(_format_coord, freq)
elif isinstance(index, ABCTimedeltaIndex):
subplot.xaxis.set_major_formatter(TimeSeries_TimedeltaFormatter())
else:
raise TypeError("index type not supported")
pylab.draw_if_interactive()