These are the changes in pandas 1.1.0. See :ref:`release` for a full changelog including other versions of pandas.
{{ header }}
:class:`PeriodIndex` now supports partial string slicing for non-monotonic indexes, mirroring :class:`DatetimeIndex` behavior (:issue:`31096`)
For example:
.. ipython:: python dti = pd.date_range("2014-01-01", periods=30, freq="30D") pi = dti.to_period("D") ser_monotonic = pd.Series(np.arange(30), index=pi) shuffler = list(range(0, 30, 2)) + list(range(1, 31, 2)) ser = ser_monotonic[shuffler] ser
.. ipython:: python ser["2014"] ser.loc["May 2015"]
- :class:`Styler` may now render CSS more efficiently where multiple cells have the same styling (:issue:`30876`)
- :meth:`Series.describe` will now show distribution percentiles for
datetime
dtypes, statisticsfirst
andlast
will now bemin
andmax
to match with numeric dtypes in :meth:`DataFrame.describe` (:issue:`30164`)
- Bug in :class:`Timestamp` where constructing :class:`Timestamp` from ambiguous epoch time and calling constructor again changed :meth:`Timestamp.value` property (:issue:`24329`)
- :meth:`DatetimeArray.searchsorted`, :meth:`TimedeltaArray.searchsorted`, :meth:`PeriodArray.searchsorted` not recognizing non-pandas scalars and incorrectly raising
ValueError
instead ofTypeError
(:issue:`30950`)
- Bug in :class:`Series` construction from NumPy array with big-endian
datetime64
dtype (:issue:`29684`)
- Bug in slicing on a :class:`DatetimeIndex` with a partial-timestamp dropping high-resolution indices near the end of a year, quarter, or month (:issue:`31064`)
- :func:`.plot` for line/bar now accepts color by dictonary (:issue:`8193`).
- Bug in :meth:`GroupBy.apply` raises
ValueError
when theby
axis is not sorted and has duplicates and the appliedfunc
does not mutate passed in objects (:issue:`30667`)
- Bug in :meth:`DataFrame.pivot_table` when only MultiIndexed columns is set (:issue:`17038`)
- Bug in :meth:`DataFrame.unstack` and :meth:`Series.unstack` can take tuple names in MultiIndexed data (:issue:`19966`)
- Bug in :meth:`DataFrame.pivot_table` when
margin
isTrue
and onlycolumn
is defined (:issue:`31016`) - Fix incorrect error message in :meth:`DataFrame.pivot` when
columns
is set toNone
. (:issue:`30924`) - Bug in :func:`crosstab` when inputs are two Series and have tuple names, the output will keep dummy MultiIndex as columns. (:issue:`18321`)
- Bug in :func:`concat` where the resulting indices are not copied when
copy=True
(:issue:`29879`)
- Appending a dictionary to a :class:`DataFrame` without passing
ignore_index=True
will raiseTypeError: Can only append a dict if ignore_index=True
instead ofTypeError: Can only append a Series if ignore_index=True or if the Series has a name
(:issue:`30871`)