forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_setitem.py
1811 lines (1470 loc) · 57.3 KB
/
test_setitem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from datetime import (
date,
datetime,
)
import numpy as np
import pytest
from pandas.errors import IndexingError
from pandas.core.dtypes.common import is_list_like
from pandas import (
NA,
Categorical,
DataFrame,
DatetimeIndex,
Index,
Interval,
IntervalIndex,
MultiIndex,
NaT,
Period,
Series,
Timedelta,
Timestamp,
array,
concat,
date_range,
interval_range,
period_range,
timedelta_range,
)
import pandas._testing as tm
from pandas.tseries.offsets import BDay
class TestSetitemDT64Values:
def test_setitem_none_nan(self):
series = Series(date_range("1/1/2000", periods=10))
series[3] = None
assert series[3] is NaT
series[3:5] = None
assert series[4] is NaT
series[5] = np.nan
assert series[5] is NaT
series[5:7] = np.nan
assert series[6] is NaT
def test_setitem_multiindex_empty_slice(self):
# https://github.com/pandas-dev/pandas/issues/35878
idx = MultiIndex.from_tuples([("a", 1), ("b", 2)])
result = Series([1, 2], index=idx)
expected = result.copy()
result.loc[[]] = 0
tm.assert_series_equal(result, expected)
def test_setitem_with_string_index(self):
# GH#23451
# Set object dtype to avoid upcast when setting date.today()
ser = Series([1, 2, 3], index=["Date", "b", "other"], dtype=object)
ser["Date"] = date.today()
assert ser.Date == date.today()
assert ser["Date"] == date.today()
def test_setitem_tuple_with_datetimetz_values(self):
# GH#20441
arr = date_range("2017", periods=4, tz="US/Eastern")
index = [(0, 1), (0, 2), (0, 3), (0, 4)]
result = Series(arr, index=index)
expected = result.copy()
result[(0, 1)] = np.nan
expected.iloc[0] = np.nan
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("tz", ["US/Eastern", "UTC", "Asia/Tokyo"])
def test_setitem_with_tz(self, tz, indexer_sli):
orig = Series(date_range("2016-01-01", freq="H", periods=3, tz=tz))
assert orig.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-01-01 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2016-01-01 02:00", tz=tz),
]
)
# scalar
ser = orig.copy()
indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz)
tm.assert_series_equal(ser, exp)
# vector
vals = Series(
[Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
index=[1, 2],
)
assert vals.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-01-01 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2012-01-01 00:00", tz=tz),
]
)
ser = orig.copy()
indexer_sli(ser)[[1, 2]] = vals
tm.assert_series_equal(ser, exp)
def test_setitem_with_tz_dst(self, indexer_sli):
# GH#14146 trouble setting values near DST boundary
tz = "US/Eastern"
orig = Series(date_range("2016-11-06", freq="H", periods=3, tz=tz))
assert orig.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-11-06 00:00-04:00", tz=tz),
Timestamp("2011-01-01 00:00-05:00", tz=tz),
Timestamp("2016-11-06 01:00-05:00", tz=tz),
]
)
# scalar
ser = orig.copy()
indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz)
tm.assert_series_equal(ser, exp)
# vector
vals = Series(
[Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
index=[1, 2],
)
assert vals.dtype == f"datetime64[ns, {tz}]"
exp = Series(
[
Timestamp("2016-11-06 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2012-01-01 00:00", tz=tz),
]
)
ser = orig.copy()
indexer_sli(ser)[[1, 2]] = vals
tm.assert_series_equal(ser, exp)
def test_object_series_setitem_dt64array_exact_match(self):
# make sure the dt64 isn't cast by numpy to integers
# https://github.com/numpy/numpy/issues/12550
ser = Series({"X": np.nan}, dtype=object)
indexer = [True]
# "exact_match" -> size of array being set matches size of ser
value = np.array([4], dtype="M8[ns]")
ser.iloc[indexer] = value
expected = Series([value[0]], index=["X"], dtype=object)
assert all(isinstance(x, np.datetime64) for x in expected.values)
tm.assert_series_equal(ser, expected)
class TestSetitemScalarIndexer:
def test_setitem_negative_out_of_bounds(self):
ser = Series(["a"] * 10, index=["a"] * 10)
msg = "index -11 is out of bounds for axis 0 with size 10"
warn_msg = "Series.__setitem__ treating keys as positions is deprecated"
with pytest.raises(IndexError, match=msg):
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
ser[-11] = "foo"
@pytest.mark.parametrize("indexer", [tm.loc, tm.at])
@pytest.mark.parametrize("ser_index", [0, 1])
def test_setitem_series_object_dtype(self, indexer, ser_index):
# GH#38303
ser = Series([0, 0], dtype="object")
idxr = indexer(ser)
idxr[0] = Series([42], index=[ser_index])
expected = Series([Series([42], index=[ser_index]), 0], dtype="object")
tm.assert_series_equal(ser, expected)
@pytest.mark.parametrize("index, exp_value", [(0, 42), (1, np.nan)])
def test_setitem_series(self, index, exp_value):
# GH#38303
ser = Series([0, 0])
ser.loc[0] = Series([42], index=[index])
expected = Series([exp_value, 0])
tm.assert_series_equal(ser, expected)
class TestSetitemSlices:
def test_setitem_slice_float_raises(self, datetime_series):
msg = (
"cannot do slice indexing on DatetimeIndex with these indexers "
r"\[{key}\] of type float"
)
with pytest.raises(TypeError, match=msg.format(key=r"4\.0")):
datetime_series[4.0:10.0] = 0
with pytest.raises(TypeError, match=msg.format(key=r"4\.5")):
datetime_series[4.5:10.0] = 0
def test_setitem_slice(self):
ser = Series(range(10), index=list(range(10)))
ser[-12:] = 0
assert (ser == 0).all()
ser[:-12] = 5
assert (ser == 0).all()
def test_setitem_slice_integers(self):
ser = Series(
np.random.default_rng(2).standard_normal(8),
index=[2, 4, 6, 8, 10, 12, 14, 16],
)
ser[:4] = 0
assert (ser[:4] == 0).all()
assert not (ser[4:] == 0).any()
def test_setitem_slicestep(self):
# caught this bug when writing tests
series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20))
series[::2] = 0
assert (series[::2] == 0).all()
def test_setitem_multiindex_slice(self, indexer_sli):
# GH 8856
mi = MultiIndex.from_product(([0, 1], list("abcde")))
result = Series(np.arange(10, dtype=np.int64), mi)
indexer_sli(result)[::4] = 100
expected = Series([100, 1, 2, 3, 100, 5, 6, 7, 100, 9], mi)
tm.assert_series_equal(result, expected)
class TestSetitemBooleanMask:
def test_setitem_mask_cast(self):
# GH#2746
# need to upcast
ser = Series([1, 2], index=[1, 2], dtype="int64")
ser[[True, False]] = Series([0], index=[1], dtype="int64")
expected = Series([0, 2], index=[1, 2], dtype="int64")
tm.assert_series_equal(ser, expected)
def test_setitem_mask_align_and_promote(self):
# GH#8387: test that changing types does not break alignment
ts = Series(
np.random.default_rng(2).standard_normal(100), index=np.arange(100, 0, -1)
).round(5)
mask = ts > 0
left = ts.copy()
right = ts[mask].copy().map(str)
with tm.assert_produces_warning(
FutureWarning, match="item of incompatible dtype"
):
left[mask] = right
expected = ts.map(lambda t: str(t) if t > 0 else t)
tm.assert_series_equal(left, expected)
def test_setitem_mask_promote_strs(self):
ser = Series([0, 1, 2, 0])
mask = ser > 0
ser2 = ser[mask].map(str)
with tm.assert_produces_warning(
FutureWarning, match="item of incompatible dtype"
):
ser[mask] = ser2
expected = Series([0, "1", "2", 0])
tm.assert_series_equal(ser, expected)
def test_setitem_mask_promote(self):
ser = Series([0, "foo", "bar", 0])
mask = Series([False, True, True, False])
ser2 = ser[mask]
ser[mask] = ser2
expected = Series([0, "foo", "bar", 0])
tm.assert_series_equal(ser, expected)
def test_setitem_boolean(self, string_series):
mask = string_series > string_series.median()
# similar indexed series
result = string_series.copy()
result[mask] = string_series * 2
expected = string_series * 2
tm.assert_series_equal(result[mask], expected[mask])
# needs alignment
result = string_series.copy()
result[mask] = (string_series * 2)[0:5]
expected = (string_series * 2)[0:5].reindex_like(string_series)
expected[-mask] = string_series[mask]
tm.assert_series_equal(result[mask], expected[mask])
def test_setitem_boolean_corner(self, datetime_series):
ts = datetime_series
mask_shifted = ts.shift(1, freq=BDay()) > ts.median()
msg = (
r"Unalignable boolean Series provided as indexer \(index of "
r"the boolean Series and of the indexed object do not match"
)
with pytest.raises(IndexingError, match=msg):
ts[mask_shifted] = 1
with pytest.raises(IndexingError, match=msg):
ts.loc[mask_shifted] = 1
def test_setitem_boolean_different_order(self, string_series):
ordered = string_series.sort_values()
copy = string_series.copy()
copy[ordered > 0] = 0
expected = string_series.copy()
expected[expected > 0] = 0
tm.assert_series_equal(copy, expected)
@pytest.mark.parametrize("func", [list, np.array, Series])
def test_setitem_boolean_python_list(self, func):
# GH19406
ser = Series([None, "b", None])
mask = func([True, False, True])
ser[mask] = ["a", "c"]
expected = Series(["a", "b", "c"])
tm.assert_series_equal(ser, expected)
def test_setitem_boolean_nullable_int_types(self, any_numeric_ea_dtype):
# GH: 26468
ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
ser[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype)
expected = Series([5, 6, 2, 3], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(ser, expected)
ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
ser.loc[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype)
tm.assert_series_equal(ser, expected)
ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
loc_ser = Series(range(4), dtype=any_numeric_ea_dtype)
ser.loc[ser > 6] = loc_ser.loc[loc_ser > 1]
tm.assert_series_equal(ser, expected)
def test_setitem_with_bool_mask_and_values_matching_n_trues_in_length(self):
# GH#30567
ser = Series([None] * 10)
mask = [False] * 3 + [True] * 5 + [False] * 2
ser[mask] = range(5)
result = ser
expected = Series([None] * 3 + list(range(5)) + [None] * 2, dtype=object)
tm.assert_series_equal(result, expected)
def test_setitem_nan_with_bool(self):
# GH 13034
result = Series([True, False, True])
with tm.assert_produces_warning(
FutureWarning, match="item of incompatible dtype"
):
result[0] = np.nan
expected = Series([np.nan, False, True], dtype=object)
tm.assert_series_equal(result, expected)
def test_setitem_mask_smallint_upcast(self):
orig = Series([1, 2, 3], dtype="int8")
alt = np.array([999, 1000, 1001], dtype=np.int64)
mask = np.array([True, False, True])
ser = orig.copy()
with tm.assert_produces_warning(
FutureWarning, match="item of incompatible dtype"
):
ser[mask] = Series(alt)
expected = Series([999, 2, 1001])
tm.assert_series_equal(ser, expected)
ser2 = orig.copy()
with tm.assert_produces_warning(
FutureWarning, match="item of incompatible dtype"
):
ser2.mask(mask, alt, inplace=True)
tm.assert_series_equal(ser2, expected)
ser3 = orig.copy()
res = ser3.where(~mask, Series(alt))
tm.assert_series_equal(res, expected)
def test_setitem_mask_smallint_no_upcast(self):
# like test_setitem_mask_smallint_upcast, but while we can't hold 'alt',
# we *can* hold alt[mask] without casting
orig = Series([1, 2, 3], dtype="uint8")
alt = Series([245, 1000, 246], dtype=np.int64)
mask = np.array([True, False, True])
ser = orig.copy()
ser[mask] = alt
expected = Series([245, 2, 246], dtype="uint8")
tm.assert_series_equal(ser, expected)
ser2 = orig.copy()
ser2.mask(mask, alt, inplace=True)
tm.assert_series_equal(ser2, expected)
# TODO: ser.where(~mask, alt) unnecessarily upcasts to int64
ser3 = orig.copy()
res = ser3.where(~mask, alt)
tm.assert_series_equal(res, expected, check_dtype=False)
class TestSetitemViewCopySemantics:
def test_setitem_invalidates_datetime_index_freq(self, using_copy_on_write):
# GH#24096 altering a datetime64tz Series inplace invalidates the
# `freq` attribute on the underlying DatetimeIndex
dti = date_range("20130101", periods=3, tz="US/Eastern")
ts = dti[1]
ser = Series(dti)
assert ser._values is not dti
if using_copy_on_write:
assert ser._values._ndarray.base is dti._data._ndarray.base
else:
assert ser._values._ndarray.base is not dti._data._ndarray.base
assert dti.freq == "D"
ser.iloc[1] = NaT
assert ser._values.freq is None
# check that the DatetimeIndex was not altered in place
assert ser._values is not dti
assert ser._values._ndarray.base is not dti._data._ndarray.base
assert dti[1] == ts
assert dti.freq == "D"
def test_dt64tz_setitem_does_not_mutate_dti(self, using_copy_on_write):
# GH#21907, GH#24096
dti = date_range("2016-01-01", periods=10, tz="US/Pacific")
ts = dti[0]
ser = Series(dti)
assert ser._values is not dti
if using_copy_on_write:
assert ser._values._ndarray.base is dti._data._ndarray.base
assert ser._mgr.arrays[0]._ndarray.base is dti._data._ndarray.base
else:
assert ser._values._ndarray.base is not dti._data._ndarray.base
assert ser._mgr.arrays[0]._ndarray.base is not dti._data._ndarray.base
assert ser._mgr.arrays[0] is not dti
ser[::3] = NaT
assert ser[0] is NaT
assert dti[0] == ts
class TestSetitemCallable:
def test_setitem_callable_key(self):
# GH#12533
ser = Series([1, 2, 3, 4], index=list("ABCD"))
ser[lambda x: "A"] = -1
expected = Series([-1, 2, 3, 4], index=list("ABCD"))
tm.assert_series_equal(ser, expected)
def test_setitem_callable_other(self):
# GH#13299
inc = lambda x: x + 1
# set object dtype to avoid upcast when setting inc
ser = Series([1, 2, -1, 4], dtype=object)
ser[ser < 0] = inc
expected = Series([1, 2, inc, 4])
tm.assert_series_equal(ser, expected)
class TestSetitemWithExpansion:
def test_setitem_empty_series(self):
# GH#10193
key = Timestamp("2012-01-01")
series = Series(dtype=object)
series[key] = 47
expected = Series(47, [key])
tm.assert_series_equal(series, expected)
def test_setitem_empty_series_datetimeindex_preserves_freq(self):
# GH#33573 our index should retain its freq
series = Series([], DatetimeIndex([], freq="D"), dtype=object)
key = Timestamp("2012-01-01")
series[key] = 47
expected = Series(47, DatetimeIndex([key], freq="D"))
tm.assert_series_equal(series, expected)
assert series.index.freq == expected.index.freq
def test_setitem_empty_series_timestamp_preserves_dtype(self):
# GH 21881
timestamp = Timestamp(1412526600000000000)
series = Series([timestamp], index=["timestamp"], dtype=object)
expected = series["timestamp"]
series = Series([], dtype=object)
series["anything"] = 300.0
series["timestamp"] = timestamp
result = series["timestamp"]
assert result == expected
@pytest.mark.parametrize(
"td",
[
Timedelta("9 days"),
Timedelta("9 days").to_timedelta64(),
Timedelta("9 days").to_pytimedelta(),
],
)
def test_append_timedelta_does_not_cast(self, td):
# GH#22717 inserting a Timedelta should _not_ cast to int64
expected = Series(["x", td], index=[0, "td"], dtype=object)
ser = Series(["x"])
ser["td"] = td
tm.assert_series_equal(ser, expected)
assert isinstance(ser["td"], Timedelta)
ser = Series(["x"])
ser.loc["td"] = Timedelta("9 days")
tm.assert_series_equal(ser, expected)
assert isinstance(ser["td"], Timedelta)
def test_setitem_with_expansion_type_promotion(self):
# GH#12599
ser = Series(dtype=object)
ser["a"] = Timestamp("2016-01-01")
ser["b"] = 3.0
ser["c"] = "foo"
expected = Series([Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"])
tm.assert_series_equal(ser, expected)
def test_setitem_not_contained(self, string_series):
# set item that's not contained
ser = string_series.copy()
assert "foobar" not in ser.index
ser["foobar"] = 1
app = Series([1], index=["foobar"], name="series")
expected = concat([string_series, app])
tm.assert_series_equal(ser, expected)
def test_setitem_keep_precision(self, any_numeric_ea_dtype):
# GH#32346
ser = Series([1, 2], dtype=any_numeric_ea_dtype)
ser[2] = 10
expected = Series([1, 2, 10], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(ser, expected)
@pytest.mark.parametrize(
"na, target_na, dtype, target_dtype, indexer, warn",
[
(NA, NA, "Int64", "Int64", 1, None),
(NA, NA, "Int64", "Int64", 2, None),
(NA, np.nan, "int64", "float64", 1, None),
(NA, np.nan, "int64", "float64", 2, None),
(NaT, NaT, "int64", "object", 1, FutureWarning),
(NaT, NaT, "int64", "object", 2, None),
(np.nan, NA, "Int64", "Int64", 1, None),
(np.nan, NA, "Int64", "Int64", 2, None),
(np.nan, NA, "Float64", "Float64", 1, None),
(np.nan, NA, "Float64", "Float64", 2, None),
(np.nan, np.nan, "int64", "float64", 1, None),
(np.nan, np.nan, "int64", "float64", 2, None),
],
)
def test_setitem_enlarge_with_na(
self, na, target_na, dtype, target_dtype, indexer, warn
):
# GH#32346
ser = Series([1, 2], dtype=dtype)
with tm.assert_produces_warning(warn, match="item of incompatible dtype"):
ser[indexer] = na
expected_values = [1, target_na] if indexer == 1 else [1, 2, target_na]
expected = Series(expected_values, dtype=target_dtype)
tm.assert_series_equal(ser, expected)
def test_setitem_enlargement_object_none(self, nulls_fixture):
# GH#48665
ser = Series(["a", "b"])
ser[3] = nulls_fixture
expected = Series(["a", "b", nulls_fixture], index=[0, 1, 3])
tm.assert_series_equal(ser, expected)
assert ser[3] is nulls_fixture
def test_setitem_scalar_into_readonly_backing_data():
# GH#14359: test that you cannot mutate a read only buffer
array = np.zeros(5)
array.flags.writeable = False # make the array immutable
series = Series(array, copy=False)
for n in series.index:
msg = "assignment destination is read-only"
with pytest.raises(ValueError, match=msg):
series[n] = 1
assert array[n] == 0
def test_setitem_slice_into_readonly_backing_data():
# GH#14359: test that you cannot mutate a read only buffer
array = np.zeros(5)
array.flags.writeable = False # make the array immutable
series = Series(array, copy=False)
msg = "assignment destination is read-only"
with pytest.raises(ValueError, match=msg):
series[1:3] = 1
assert not array.any()
def test_setitem_categorical_assigning_ops():
orig = Series(Categorical(["b", "b"], categories=["a", "b"]))
ser = orig.copy()
ser[:] = "a"
exp = Series(Categorical(["a", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser[1] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser[ser.index > 0] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser[[False, True]] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(ser, exp)
ser = orig.copy()
ser.index = ["x", "y"]
ser["y"] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"])
tm.assert_series_equal(ser, exp)
def test_setitem_nan_into_categorical():
# ensure that one can set something to np.nan
ser = Series(Categorical([1, 2, 3]))
exp = Series(Categorical([1, np.nan, 3], categories=[1, 2, 3]))
ser[1] = np.nan
tm.assert_series_equal(ser, exp)
class TestSetitemCasting:
@pytest.mark.parametrize("unique", [True, False])
@pytest.mark.parametrize("val", [3, 3.0, "3"], ids=type)
def test_setitem_non_bool_into_bool(self, val, indexer_sli, unique):
# dont cast these 3-like values to bool
ser = Series([True, False])
if not unique:
ser.index = [1, 1]
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
indexer_sli(ser)[1] = val
assert type(ser.iloc[1]) == type(val)
expected = Series([True, val], dtype=object, index=ser.index)
if not unique and indexer_sli is not tm.iloc:
expected = Series([val, val], dtype=object, index=[1, 1])
tm.assert_series_equal(ser, expected)
def test_setitem_boolean_array_into_npbool(self):
# GH#45462
ser = Series([True, False, True])
values = ser._values
arr = array([True, False, None])
ser[:2] = arr[:2] # no NAs -> can set inplace
assert ser._values is values
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
ser[1:] = arr[1:] # has an NA -> cast to boolean dtype
expected = Series(arr)
tm.assert_series_equal(ser, expected)
class SetitemCastingEquivalents:
"""
Check each of several methods that _should_ be equivalent to `obj[key] = val`
We assume that
- obj.index is the default Index(range(len(obj)))
- the setitem does not expand the obj
"""
@pytest.fixture
def is_inplace(self, obj, expected):
"""
Whether we expect the setting to be in-place or not.
"""
return expected.dtype == obj.dtype
def check_indexer(self, obj, key, expected, val, indexer, is_inplace):
orig = obj
obj = obj.copy()
arr = obj._values
indexer(obj)[key] = val
tm.assert_series_equal(obj, expected)
self._check_inplace(is_inplace, orig, arr, obj)
def _check_inplace(self, is_inplace, orig, arr, obj):
if is_inplace is None:
# We are not (yet) checking whether setting is inplace or not
pass
elif is_inplace:
if arr.dtype.kind in ["m", "M"]:
# We may not have the same DTA/TDA, but will have the same
# underlying data
assert arr._ndarray is obj._values._ndarray
else:
assert obj._values is arr
else:
# otherwise original array should be unchanged
tm.assert_equal(arr, orig._values)
def test_int_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace):
if not isinstance(key, int):
pytest.skip("Not relevant for int key")
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace)
if indexer_sli is tm.loc:
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, key, expected, val, tm.at, is_inplace)
elif indexer_sli is tm.iloc:
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, key, expected, val, tm.iat, is_inplace)
rng = range(key, key + 1)
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, rng, expected, val, indexer_sli, is_inplace)
if indexer_sli is not tm.loc:
# Note: no .loc because that handles slice edges differently
slc = slice(key, key + 1)
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, slc, expected, val, indexer_sli, is_inplace)
ilkey = [key]
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace)
indkey = np.array(ilkey)
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace)
genkey = (x for x in [key])
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace)
def test_slice_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace):
if not isinstance(key, slice):
pytest.skip("Not relevant for slice key")
if indexer_sli is not tm.loc:
# Note: no .loc because that handles slice edges differently
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace)
ilkey = list(range(len(obj)))[key]
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace)
indkey = np.array(ilkey)
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace)
genkey = (x for x in indkey)
with tm.assert_produces_warning(warn, match="incompatible dtype"):
self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace)
def test_mask_key(self, obj, key, expected, warn, val, indexer_sli):
# setitem with boolean mask
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
obj = obj.copy()
if is_list_like(val) and len(val) < mask.sum():
msg = "boolean index did not match indexed array along dimension"
with pytest.raises(IndexError, match=msg):
indexer_sli(obj)[mask] = val
return
with tm.assert_produces_warning(warn, match="incompatible dtype"):
indexer_sli(obj)[mask] = val
tm.assert_series_equal(obj, expected)
def test_series_where(self, obj, key, expected, warn, val, is_inplace):
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
if is_list_like(val) and len(val) < len(obj):
# Series.where is not valid here
msg = "operands could not be broadcast together with shapes"
with pytest.raises(ValueError, match=msg):
obj.where(~mask, val)
return
orig = obj
obj = obj.copy()
arr = obj._values
res = obj.where(~mask, val)
if val is NA and res.dtype == object:
expected = expected.fillna(NA)
elif val is None and res.dtype == object:
assert expected.dtype == object
expected = expected.copy()
expected[expected.isna()] = None
tm.assert_series_equal(res, expected)
self._check_inplace(is_inplace, orig, arr, obj)
def test_index_where(self, obj, key, expected, warn, val):
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
res = Index(obj).where(~mask, val)
expected_idx = Index(expected, dtype=expected.dtype)
tm.assert_index_equal(res, expected_idx)
def test_index_putmask(self, obj, key, expected, warn, val):
mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True
res = Index(obj).putmask(mask, val)
tm.assert_index_equal(res, Index(expected, dtype=expected.dtype))
@pytest.mark.parametrize(
"obj,expected,key,warn",
[
pytest.param(
# GH#45568 setting a valid NA value into IntervalDtype[int] should
# cast to IntervalDtype[float]
Series(interval_range(1, 5)),
Series(
[Interval(1, 2), np.nan, Interval(3, 4), Interval(4, 5)],
dtype="interval[float64]",
),
1,
FutureWarning,
id="interval_int_na_value",
),
pytest.param(
# these induce dtype changes
Series([2, 3, 4, 5, 6, 7, 8, 9, 10]),
Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]),
slice(None, None, 2),
None,
id="int_series_slice_key_step",
),
pytest.param(
Series([True, True, False, False]),
Series([np.nan, True, np.nan, False], dtype=object),
slice(None, None, 2),
FutureWarning,
id="bool_series_slice_key_step",
),
pytest.param(
# these induce dtype changes
Series(np.arange(10)),
Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]),
slice(None, 5),
None,
id="int_series_slice_key",
),
pytest.param(
# changes dtype GH#4463
Series([1, 2, 3]),
Series([np.nan, 2, 3]),
0,
None,
id="int_series_int_key",
),
pytest.param(
# changes dtype GH#4463
Series([False]),
Series([np.nan], dtype=object),
# TODO: maybe go to float64 since we are changing the _whole_ Series?
0,
FutureWarning,
id="bool_series_int_key_change_all",
),
pytest.param(
# changes dtype GH#4463
Series([False, True]),
Series([np.nan, True], dtype=object),
0,
FutureWarning,
id="bool_series_int_key",
),
],
)
class TestSetitemCastingEquivalents(SetitemCastingEquivalents):
@pytest.fixture(params=[np.nan, np.float64("NaN"), None, NA])
def val(self, request):
"""
NA values that should generally be valid_na for *all* dtypes.
Include both python float NaN and np.float64; only np.float64 has a
`dtype` attribute.
"""
return request.param
class TestSetitemTimedelta64IntoNumeric(SetitemCastingEquivalents):
# timedelta64 should not be treated as integers when setting into
# numeric Series
@pytest.fixture
def val(self):
td = np.timedelta64(4, "ns")
return td
# TODO: could also try np.full((1,), td)
@pytest.fixture(params=[complex, int, float])
def dtype(self, request):
return request.param
@pytest.fixture
def obj(self, dtype):
arr = np.arange(5).astype(dtype)
ser = Series(arr)
return ser
@pytest.fixture
def expected(self, dtype):
arr = np.arange(5).astype(dtype)
ser = Series(arr)
ser = ser.astype(object)
ser.iloc[0] = np.timedelta64(4, "ns")
return ser
@pytest.fixture
def key(self):
return 0
@pytest.fixture
def warn(self):
return FutureWarning
class TestSetitemDT64IntoInt(SetitemCastingEquivalents):
# GH#39619 dont cast dt64 to int when doing this setitem
@pytest.fixture(params=["M8[ns]", "m8[ns]"])
def dtype(self, request):
return request.param
@pytest.fixture
def scalar(self, dtype):
val = np.datetime64("2021-01-18 13:25:00", "ns")
if dtype == "m8[ns]":
val = val - val
return val
@pytest.fixture
def expected(self, scalar):
expected = Series([scalar, scalar, 3], dtype=object)
assert isinstance(expected[0], type(scalar))
return expected
@pytest.fixture
def obj(self):
return Series([1, 2, 3])