forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_impl.py
350 lines (279 loc) · 10.8 KB
/
test_impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from datetime import datetime
import numpy as np
import pytest
from pandas._libs.tslibs import iNaT
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
from pandas.core.interchange.column import PandasColumn
from pandas.core.interchange.dataframe_protocol import (
ColumnNullType,
DtypeKind,
)
from pandas.core.interchange.from_dataframe import from_dataframe
from pandas.core.interchange.utils import ArrowCTypes
@pytest.fixture
def data_categorical():
return {
"ordered": pd.Categorical(list("testdata") * 30, ordered=True),
"unordered": pd.Categorical(list("testdata") * 30, ordered=False),
}
@pytest.fixture
def string_data():
return {
"separator data": [
"abC|DeF,Hik",
"234,3245.67",
"gSaf,qWer|Gre",
"asd3,4sad|",
np.nan,
]
}
@pytest.mark.parametrize("data", [("ordered", True), ("unordered", False)])
def test_categorical_dtype(data, data_categorical):
df = pd.DataFrame({"A": (data_categorical[data[0]])})
col = df.__dataframe__().get_column_by_name("A")
assert col.dtype[0] == DtypeKind.CATEGORICAL
assert col.null_count == 0
assert col.describe_null == (ColumnNullType.USE_SENTINEL, -1)
assert col.num_chunks() == 1
desc_cat = col.describe_categorical
assert desc_cat["is_ordered"] == data[1]
assert desc_cat["is_dictionary"] is True
assert isinstance(desc_cat["categories"], PandasColumn)
tm.assert_series_equal(
desc_cat["categories"]._col, pd.Series(["a", "d", "e", "s", "t"])
)
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__()))
def test_categorical_pyarrow():
# GH 49889
pa = pytest.importorskip("pyarrow", "11.0.0")
arr = ["Mon", "Tue", "Mon", "Wed", "Mon", "Thu", "Fri", "Sat", "Sun"]
table = pa.table({"weekday": pa.array(arr).dictionary_encode()})
exchange_df = table.__dataframe__()
result = from_dataframe(exchange_df)
weekday = pd.Categorical(
arr, categories=["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
)
expected = pd.DataFrame({"weekday": weekday})
tm.assert_frame_equal(result, expected)
def test_empty_categorical_pyarrow():
# https://github.com/pandas-dev/pandas/issues/53077
pa = pytest.importorskip("pyarrow", "11.0.0")
arr = [None]
table = pa.table({"arr": pa.array(arr, "float64").dictionary_encode()})
exchange_df = table.__dataframe__()
result = pd.api.interchange.from_dataframe(exchange_df)
expected = pd.DataFrame({"arr": pd.Categorical([np.nan])})
tm.assert_frame_equal(result, expected)
def test_large_string_pyarrow():
# GH 52795
pa = pytest.importorskip("pyarrow", "11.0.0")
arr = ["Mon", "Tue"]
table = pa.table({"weekday": pa.array(arr, "large_string")})
exchange_df = table.__dataframe__()
result = from_dataframe(exchange_df)
expected = pd.DataFrame({"weekday": ["Mon", "Tue"]})
tm.assert_frame_equal(result, expected)
# check round-trip
assert pa.Table.equals(pa.interchange.from_dataframe(result), table)
@pytest.mark.parametrize(
("offset", "length", "expected_values"),
[
(0, None, [3.3, float("nan"), 2.1]),
(1, None, [float("nan"), 2.1]),
(2, None, [2.1]),
(0, 2, [3.3, float("nan")]),
(0, 1, [3.3]),
(1, 1, [float("nan")]),
],
)
def test_bitmasks_pyarrow(offset, length, expected_values):
# GH 52795
pa = pytest.importorskip("pyarrow", "11.0.0")
arr = [3.3, None, 2.1]
table = pa.table({"arr": arr}).slice(offset, length)
exchange_df = table.__dataframe__()
result = from_dataframe(exchange_df)
expected = pd.DataFrame({"arr": expected_values})
tm.assert_frame_equal(result, expected)
# check round-trip
assert pa.Table.equals(pa.interchange.from_dataframe(result), table)
@pytest.mark.parametrize(
"data",
[
lambda: np.random.default_rng(2).integers(-100, 100),
lambda: np.random.default_rng(2).integers(1, 100),
lambda: np.random.default_rng(2).random(),
lambda: np.random.default_rng(2).choice([True, False]),
lambda: datetime(
year=np.random.default_rng(2).integers(1900, 2100),
month=np.random.default_rng(2).integers(1, 12),
day=np.random.default_rng(2).integers(1, 20),
),
],
)
def test_dataframe(data):
NCOLS, NROWS = 10, 20
data = {
f"col{int((i - NCOLS / 2) % NCOLS + 1)}": [data() for _ in range(NROWS)]
for i in range(NCOLS)
}
df = pd.DataFrame(data)
df2 = df.__dataframe__()
assert df2.num_columns() == NCOLS
assert df2.num_rows() == NROWS
assert list(df2.column_names()) == list(data.keys())
indices = (0, 2)
names = tuple(list(data.keys())[idx] for idx in indices)
result = from_dataframe(df2.select_columns(indices))
expected = from_dataframe(df2.select_columns_by_name(names))
tm.assert_frame_equal(result, expected)
assert isinstance(result.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list)
assert isinstance(expected.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list)
def test_missing_from_masked():
df = pd.DataFrame(
{
"x": np.array([1.0, 2.0, 3.0, 4.0, 0.0]),
"y": np.array([1.5, 2.5, 3.5, 4.5, 0]),
"z": np.array([1.0, 0.0, 1.0, 1.0, 1.0]),
}
)
df2 = df.__dataframe__()
rng = np.random.default_rng(2)
dict_null = {col: rng.integers(low=0, high=len(df)) for col in df.columns}
for col, num_nulls in dict_null.items():
null_idx = df.index[
rng.choice(np.arange(len(df)), size=num_nulls, replace=False)
]
df.loc[null_idx, col] = None
df2 = df.__dataframe__()
assert df2.get_column_by_name("x").null_count == dict_null["x"]
assert df2.get_column_by_name("y").null_count == dict_null["y"]
assert df2.get_column_by_name("z").null_count == dict_null["z"]
@pytest.mark.parametrize(
"data",
[
{"x": [1.5, 2.5, 3.5], "y": [9.2, 10.5, 11.8]},
{"x": [1, 2, 0], "y": [9.2, 10.5, 11.8]},
{
"x": np.array([True, True, False]),
"y": np.array([1, 2, 0]),
"z": np.array([9.2, 10.5, 11.8]),
},
],
)
def test_mixed_data(data):
df = pd.DataFrame(data)
df2 = df.__dataframe__()
for col_name in df.columns:
assert df2.get_column_by_name(col_name).null_count == 0
def test_mixed_missing():
df = pd.DataFrame(
{
"x": np.array([True, None, False, None, True]),
"y": np.array([None, 2, None, 1, 2]),
"z": np.array([9.2, 10.5, None, 11.8, None]),
}
)
df2 = df.__dataframe__()
for col_name in df.columns:
assert df2.get_column_by_name(col_name).null_count == 2
def test_string(string_data):
test_str_data = string_data["separator data"] + [""]
df = pd.DataFrame({"A": test_str_data})
col = df.__dataframe__().get_column_by_name("A")
assert col.size() == 6
assert col.null_count == 1
assert col.dtype[0] == DtypeKind.STRING
assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0)
df_sliced = df[1:]
col = df_sliced.__dataframe__().get_column_by_name("A")
assert col.size() == 5
assert col.null_count == 1
assert col.dtype[0] == DtypeKind.STRING
assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0)
def test_nonstring_object():
df = pd.DataFrame({"A": ["a", 10, 1.0, ()]})
col = df.__dataframe__().get_column_by_name("A")
with pytest.raises(NotImplementedError, match="not supported yet"):
col.dtype
def test_datetime():
df = pd.DataFrame({"A": [pd.Timestamp("2022-01-01"), pd.NaT]})
col = df.__dataframe__().get_column_by_name("A")
assert col.size() == 2
assert col.null_count == 1
assert col.dtype[0] == DtypeKind.DATETIME
assert col.describe_null == (ColumnNullType.USE_SENTINEL, iNaT)
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__()))
@td.skip_if_np_lt("1.23")
def test_categorical_to_numpy_dlpack():
# https://github.com/pandas-dev/pandas/issues/48393
df = pd.DataFrame({"A": pd.Categorical(["a", "b", "a"])})
col = df.__dataframe__().get_column_by_name("A")
result = np.from_dlpack(col.get_buffers()["data"][0])
expected = np.array([0, 1, 0], dtype="int8")
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("data", [{}, {"a": []}])
def test_empty_pyarrow(data):
# GH 53155
pytest.importorskip("pyarrow", "11.0.0")
from pyarrow.interchange import from_dataframe as pa_from_dataframe
expected = pd.DataFrame(data)
arrow_df = pa_from_dataframe(expected)
result = from_dataframe(arrow_df)
tm.assert_frame_equal(result, expected)
def test_multi_chunk_pyarrow() -> None:
pa = pytest.importorskip("pyarrow", "11.0.0")
n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
names = ["n_legs"]
table = pa.table([n_legs], names=names)
with pytest.raises(
RuntimeError,
match="To join chunks a copy is required which is "
"forbidden by allow_copy=False",
):
pd.api.interchange.from_dataframe(table, allow_copy=False)
@pytest.mark.parametrize("tz", ["UTC", "US/Pacific"])
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
def test_datetimetzdtype(tz, unit):
# GH 54239
tz_data = (
pd.date_range("2018-01-01", periods=5, freq="D").tz_localize(tz).as_unit(unit)
)
df = pd.DataFrame({"ts_tz": tz_data})
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__()))
def test_interchange_from_non_pandas_tz_aware():
# GH 54239, 54287
pa = pytest.importorskip("pyarrow", "11.0.0")
import pyarrow.compute as pc
arr = pa.array([datetime(2020, 1, 1), None, datetime(2020, 1, 2)])
arr = pc.assume_timezone(arr, "Asia/Kathmandu")
table = pa.table({"arr": arr})
exchange_df = table.__dataframe__()
result = from_dataframe(exchange_df)
expected = pd.DataFrame(
["2020-01-01 00:00:00+05:45", "NaT", "2020-01-02 00:00:00+05:45"],
columns=["arr"],
dtype="datetime64[us, Asia/Kathmandu]",
)
tm.assert_frame_equal(expected, result)
def test_interchange_from_corrected_buffer_dtypes(monkeypatch) -> None:
# https://github.com/pandas-dev/pandas/issues/54781
df = pd.DataFrame({"a": ["foo", "bar"]}).__dataframe__()
interchange = df.__dataframe__()
column = interchange.get_column_by_name("a")
buffers = column.get_buffers()
buffers_data = buffers["data"]
buffer_dtype = buffers_data[1]
buffer_dtype = (
DtypeKind.UINT,
8,
ArrowCTypes.UINT8,
buffer_dtype[3],
)
buffers["data"] = (buffers_data[0], buffer_dtype)
column.get_buffers = lambda: buffers
interchange.get_column_by_name = lambda _: column
monkeypatch.setattr(df, "__dataframe__", lambda allow_copy: interchange)
pd.api.interchange.from_dataframe(df)