@@ -88,7 +88,7 @@ def block(in_feat, out_feat, normalize=True):
88
88
layers = [nn .Linear (in_feat , out_feat )]
89
89
if normalize :
90
90
layers .append (nn .BatchNorm1d (out_feat , 0.8 ))
91
- layers .append (nn .LeakyReLU (0.2 , inplace = True ))
91
+ layers .append (nn .LeakyReLU (0.01 , inplace = True ))
92
92
return layers
93
93
94
94
self .model = nn .Sequential (
@@ -193,15 +193,15 @@ def training_step(self, batch):
193
193
# log sampled images
194
194
sample_imgs = self .generated_imgs [:6 ]
195
195
grid = torchvision .utils .make_grid (sample_imgs )
196
- self .logger .experiment .add_image ("generated_images" , grid , 0 )
196
+ self .logger .experiment .add_image ("train/ generated_images" , grid , self . current_epoch )
197
197
198
198
# ground truth result (ie: all fake)
199
199
# put on GPU because we created this tensor inside training_loop
200
200
valid = torch .ones (imgs .size (0 ), 1 )
201
201
valid = valid .type_as (imgs )
202
202
203
203
# adversarial loss is binary cross-entropy
204
- g_loss = self .adversarial_loss (self .discriminator (self ( z ) ), valid )
204
+ g_loss = self .adversarial_loss (self .discriminator (self . generated_imgs ), valid )
205
205
self .log ("g_loss" , g_loss , prog_bar = True )
206
206
self .manual_backward (g_loss )
207
207
optimizer_g .step ()
@@ -222,7 +222,7 @@ def training_step(self, batch):
222
222
fake = torch .zeros (imgs .size (0 ), 1 )
223
223
fake = fake .type_as (imgs )
224
224
225
- fake_loss = self .adversarial_loss (self .discriminator (self ( z ) .detach ()), fake )
225
+ fake_loss = self .adversarial_loss (self .discriminator (self . generated_imgs .detach ()), fake )
226
226
227
227
# discriminator loss is the average of these
228
228
d_loss = (real_loss + fake_loss ) / 2
@@ -232,6 +232,9 @@ def training_step(self, batch):
232
232
optimizer_d .zero_grad ()
233
233
self .untoggle_optimizer (optimizer_d )
234
234
235
+ def validation_step (self , batch , batch_idx ):
236
+ pass
237
+
235
238
def configure_optimizers (self ):
236
239
lr = self .hparams .lr
237
240
b1 = self .hparams .b1
@@ -247,7 +250,7 @@ def on_validation_epoch_end(self):
247
250
# log sampled images
248
251
sample_imgs = self (z )
249
252
grid = torchvision .utils .make_grid (sample_imgs )
250
- self .logger .experiment .add_image ("generated_images" , grid , self .current_epoch )
253
+ self .logger .experiment .add_image ("validation/ generated_images" , grid , self .current_epoch )
251
254
252
255
253
256
# %%
@@ -263,4 +266,4 @@ def on_validation_epoch_end(self):
263
266
# %%
264
267
# Start tensorboard.
265
268
# %load_ext tensorboard
266
- # %tensorboard --logdir lightning_logs/
269
+ # %tensorboard --logdir lightning_logs/ --samples_per_plugin=images=60
0 commit comments