forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_combine_concat.py
338 lines (272 loc) · 12.8 KB
/
test_combine_concat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# coding=utf-8
# pylint: disable-msg=E1101,W0612
import pytest
from datetime import datetime
from numpy import nan
import numpy as np
import pandas as pd
from pandas import Series, DataFrame, date_range, DatetimeIndex
from pandas import compat
from pandas.util.testing import assert_series_equal
import pandas.util.testing as tm
from .common import TestData
class TestSeriesCombine(TestData):
def test_append(self):
appendedSeries = self.series.append(self.objSeries)
for idx, value in compat.iteritems(appendedSeries):
if idx in self.series.index:
assert value == self.series[idx]
elif idx in self.objSeries.index:
assert value == self.objSeries[idx]
else:
self.fail("orphaned index!")
pytest.raises(ValueError, self.ts.append, self.ts,
verify_integrity=True)
def test_append_many(self):
pieces = [self.ts[:5], self.ts[5:10], self.ts[10:]]
result = pieces[0].append(pieces[1:])
assert_series_equal(result, self.ts)
def test_append_duplicates(self):
# GH 13677
s1 = pd.Series([1, 2, 3])
s2 = pd.Series([4, 5, 6])
exp = pd.Series([1, 2, 3, 4, 5, 6], index=[0, 1, 2, 0, 1, 2])
tm.assert_series_equal(s1.append(s2), exp)
tm.assert_series_equal(pd.concat([s1, s2]), exp)
# the result must have RangeIndex
exp = pd.Series([1, 2, 3, 4, 5, 6])
tm.assert_series_equal(s1.append(s2, ignore_index=True),
exp, check_index_type=True)
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True),
exp, check_index_type=True)
msg = 'Indexes have overlapping values:'
with tm.assert_raises_regex(ValueError, msg):
s1.append(s2, verify_integrity=True)
with tm.assert_raises_regex(ValueError, msg):
pd.concat([s1, s2], verify_integrity=True)
def test_combine_scalar(self):
# GH 21248
# Note - combine() with another Series is tested elsewhere because
# it is used when testing operators
s = pd.Series([i * 10 for i in range(5)])
result = s.combine(3, lambda x, y: x + y)
expected = pd.Series([i * 10 + 3 for i in range(5)])
tm.assert_series_equal(result, expected)
result = s.combine(22, lambda x, y: min(x, y))
expected = pd.Series([min(i * 10, 22) for i in range(5)])
tm.assert_series_equal(result, expected)
def test_combine_first(self):
values = tm.makeIntIndex(20).values.astype(float)
series = Series(values, index=tm.makeIntIndex(20))
series_copy = series * 2
series_copy[::2] = np.NaN
# nothing used from the input
combined = series.combine_first(series_copy)
tm.assert_series_equal(combined, series)
# Holes filled from input
combined = series_copy.combine_first(series)
assert np.isfinite(combined).all()
tm.assert_series_equal(combined[::2], series[::2])
tm.assert_series_equal(combined[1::2], series_copy[1::2])
# mixed types
index = tm.makeStringIndex(20)
floats = Series(tm.randn(20), index=index)
strings = Series(tm.makeStringIndex(10), index=index[::2])
combined = strings.combine_first(floats)
tm.assert_series_equal(strings, combined.loc[index[::2]])
tm.assert_series_equal(floats[1::2].astype(object),
combined.loc[index[1::2]])
# corner case
s = Series([1., 2, 3], index=[0, 1, 2])
result = s.combine_first(Series([], index=[]))
assert_series_equal(s, result)
def test_update(self):
s = Series([1.5, nan, 3., 4., nan])
s2 = Series([nan, 3.5, nan, 5.])
s.update(s2)
expected = Series([1.5, 3.5, 3., 5., np.nan])
assert_series_equal(s, expected)
# GH 3217
df = DataFrame([{"a": 1}, {"a": 3, "b": 2}])
df['c'] = np.nan
# this will fail as long as series is a sub-class of ndarray
# df['c'].update(Series(['foo'],index=[0])) #####
def test_concat_empty_series_dtypes_roundtrips(self):
# round-tripping with self & like self
dtypes = map(np.dtype, ['float64', 'int8', 'uint8', 'bool', 'm8[ns]',
'M8[ns]'])
for dtype in dtypes:
assert pd.concat([Series(dtype=dtype)]).dtype == dtype
assert pd.concat([Series(dtype=dtype),
Series(dtype=dtype)]).dtype == dtype
def int_result_type(dtype, dtype2):
typs = set([dtype.kind, dtype2.kind])
if not len(typs - set(['i', 'u', 'b'])) and (dtype.kind == 'i' or
dtype2.kind == 'i'):
return 'i'
elif not len(typs - set(['u', 'b'])) and (dtype.kind == 'u' or
dtype2.kind == 'u'):
return 'u'
return None
def float_result_type(dtype, dtype2):
typs = set([dtype.kind, dtype2.kind])
if not len(typs - set(['f', 'i', 'u'])) and (dtype.kind == 'f' or
dtype2.kind == 'f'):
return 'f'
return None
def get_result_type(dtype, dtype2):
result = float_result_type(dtype, dtype2)
if result is not None:
return result
result = int_result_type(dtype, dtype2)
if result is not None:
return result
return 'O'
for dtype in dtypes:
for dtype2 in dtypes:
if dtype == dtype2:
continue
expected = get_result_type(dtype, dtype2)
result = pd.concat([Series(dtype=dtype), Series(dtype=dtype2)
]).dtype
assert result.kind == expected
def test_combine_first_dt_tz_values(self):
dts1 = pd.date_range('20150101', '20150105', tz='America/New_York')
df1 = pd.DataFrame({'date': dts1})
dts2 = pd.date_range('20160514', '20160518', tz='America/New_York')
df2 = pd.DataFrame({'date': dts2}, index=range(3, 8))
result = df1.date.combine_first(df2.date)
exp_vals = pd.DatetimeIndex(['20150101', '20150102', '20150103',
'20150104', '20150105', '20160516',
'20160517', '20160518'],
tz='America/New_York')
exp = pd.Series(exp_vals, name='date')
assert_series_equal(exp, result)
def test_concat_empty_series_dtypes(self):
# booleans
assert pd.concat([Series(dtype=np.bool_),
Series(dtype=np.int32)]).dtype == np.int32
assert pd.concat([Series(dtype=np.bool_),
Series(dtype=np.float32)]).dtype == np.object_
# datetime-like
assert pd.concat([Series(dtype='m8[ns]'),
Series(dtype=np.bool)]).dtype == np.object_
assert pd.concat([Series(dtype='m8[ns]'),
Series(dtype=np.int64)]).dtype == np.object_
assert pd.concat([Series(dtype='M8[ns]'),
Series(dtype=np.bool)]).dtype == np.object_
assert pd.concat([Series(dtype='M8[ns]'),
Series(dtype=np.int64)]).dtype == np.object_
assert pd.concat([Series(dtype='M8[ns]'),
Series(dtype=np.bool_),
Series(dtype=np.int64)]).dtype == np.object_
# categorical
assert pd.concat([Series(dtype='category'),
Series(dtype='category')]).dtype == 'category'
# GH 18515
assert pd.concat([Series(np.array([]), dtype='category'),
Series(dtype='float64')]).dtype == 'float64'
assert pd.concat([Series(dtype='category'),
Series(dtype='object')]).dtype == 'object'
# sparse
result = pd.concat([Series(dtype='float64').to_sparse(), Series(
dtype='float64').to_sparse()])
assert result.dtype == np.float64
assert result.ftype == 'float64:sparse'
result = pd.concat([Series(dtype='float64').to_sparse(), Series(
dtype='float64')])
assert result.dtype == np.float64
assert result.ftype == 'float64:sparse'
result = pd.concat([Series(dtype='float64').to_sparse(), Series(
dtype='object')])
assert result.dtype == np.object_
assert result.ftype == 'object:dense'
def test_combine_first_dt64(self):
from pandas.core.tools.datetimes import to_datetime
s0 = to_datetime(Series(["2010", np.NaN]))
s1 = to_datetime(Series([np.NaN, "2011"]))
rs = s0.combine_first(s1)
xp = to_datetime(Series(['2010', '2011']))
assert_series_equal(rs, xp)
s0 = to_datetime(Series(["2010", np.NaN]))
s1 = Series([np.NaN, "2011"])
rs = s0.combine_first(s1)
xp = Series([datetime(2010, 1, 1), '2011'])
assert_series_equal(rs, xp)
class TestTimeseries(object):
def test_append_concat(self):
rng = date_range('5/8/2012 1:45', periods=10, freq='5T')
ts = Series(np.random.randn(len(rng)), rng)
df = DataFrame(np.random.randn(len(rng), 4), index=rng)
result = ts.append(ts)
result_df = df.append(df)
ex_index = DatetimeIndex(np.tile(rng.values, 2))
tm.assert_index_equal(result.index, ex_index)
tm.assert_index_equal(result_df.index, ex_index)
appended = rng.append(rng)
tm.assert_index_equal(appended, ex_index)
appended = rng.append([rng, rng])
ex_index = DatetimeIndex(np.tile(rng.values, 3))
tm.assert_index_equal(appended, ex_index)
# different index names
rng1 = rng.copy()
rng2 = rng.copy()
rng1.name = 'foo'
rng2.name = 'bar'
assert rng1.append(rng1).name == 'foo'
assert rng1.append(rng2).name is None
def test_append_concat_tz(self):
# see gh-2938
rng = date_range('5/8/2012 1:45', periods=10, freq='5T',
tz='US/Eastern')
rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T',
tz='US/Eastern')
rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T',
tz='US/Eastern')
ts = Series(np.random.randn(len(rng)), rng)
df = DataFrame(np.random.randn(len(rng), 4), index=rng)
ts2 = Series(np.random.randn(len(rng2)), rng2)
df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2)
result = ts.append(ts2)
result_df = df.append(df2)
tm.assert_index_equal(result.index, rng3)
tm.assert_index_equal(result_df.index, rng3)
appended = rng.append(rng2)
tm.assert_index_equal(appended, rng3)
def test_append_concat_tz_explicit_pytz(self):
# see gh-2938
from pytz import timezone as timezone
rng = date_range('5/8/2012 1:45', periods=10, freq='5T',
tz=timezone('US/Eastern'))
rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T',
tz=timezone('US/Eastern'))
rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T',
tz=timezone('US/Eastern'))
ts = Series(np.random.randn(len(rng)), rng)
df = DataFrame(np.random.randn(len(rng), 4), index=rng)
ts2 = Series(np.random.randn(len(rng2)), rng2)
df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2)
result = ts.append(ts2)
result_df = df.append(df2)
tm.assert_index_equal(result.index, rng3)
tm.assert_index_equal(result_df.index, rng3)
appended = rng.append(rng2)
tm.assert_index_equal(appended, rng3)
def test_append_concat_tz_dateutil(self):
# see gh-2938
rng = date_range('5/8/2012 1:45', periods=10, freq='5T',
tz='dateutil/US/Eastern')
rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T',
tz='dateutil/US/Eastern')
rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T',
tz='dateutil/US/Eastern')
ts = Series(np.random.randn(len(rng)), rng)
df = DataFrame(np.random.randn(len(rng), 4), index=rng)
ts2 = Series(np.random.randn(len(rng2)), rng2)
df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2)
result = ts.append(ts2)
result_df = df.append(df2)
tm.assert_index_equal(result.index, rng3)
tm.assert_index_equal(result_df.index, rng3)
appended = rng.append(rng2)
tm.assert_index_equal(appended, rng3)