Skip to content

Commit 41a2e47

Browse files
committed
DOC: Fix the following 'errors' (pandas-dev#24178):
doc/source/groupby.rst:72:18: F821 undefined name 'obj' doc/source/groupby.rst:72:30: F821 undefined name 'key' doc/source/groupby.rst:73:18: F821 undefined name 'obj' doc/source/groupby.rst:73:30: F821 undefined name 'key' doc/source/groupby.rst:74:18: F821 undefined name 'obj' doc/source/groupby.rst:74:31: F821 undefined name 'key1' doc/source/groupby.rst:74:37: F821 undefined name 'key2'
1 parent 9209528 commit 41a2e47

File tree

1 file changed

+20
-6
lines changed

1 file changed

+20
-6
lines changed

doc/source/groupby.rst

+20-6
Original file line numberDiff line numberDiff line change
@@ -62,16 +62,30 @@ See the :ref:`cookbook<cookbook.grouping>` for some advanced strategies.
6262
Splitting an object into groups
6363
-------------------------------
6464

65-
pandas objects can be split on any of their axes. The abstract definition of
65+
Pandas objects can be split on any of their axes. The abstract definition of
6666
grouping is to provide a mapping of labels to group names. To create a GroupBy
67-
object (more on what the GroupBy object is later), you may do the following:
67+
object, see below (more on what the GroupBy object is later). A
68+
groupby can be applied in the following ways to a pandas object:
69+
70+
* grouped = obj.groupby(key)
71+
* grouped = obj.groupby(key, axis='columns')
72+
* grouped = obj.groupby([key1, key2])
6873

6974
.. code-block:: python
7075
71-
# default is axis=0
72-
>>> grouped = obj.groupby(key)
73-
>>> grouped = obj.groupby(key, axis=1)
74-
>>> grouped = obj.groupby([key1, key2])
76+
df = pd.DataFrame(
77+
[('bird', 'Falconiformes', 389.0),
78+
('bird', 'Psittaciformes', 24.0),
79+
('mammal', 'Carnivora', 80.2),
80+
('mammal', 'Primates', np.nan),
81+
('mammal', 'Carnivora', 58)],
82+
index=['falcon', 'parrot', 'lion', 'monkey', 'leopard'],
83+
columns=('class', 'order', 'max_speed')
84+
)
85+
86+
grouped = df.groupby('class')
87+
grouped = df.groupby('order', axis='columns')
88+
grouped = df.groupby(['class', 'order'])
7589
7690
The mapping can be specified many different ways:
7791

0 commit comments

Comments
 (0)