|
| 1 | +from typing import Literal |
| 2 | + |
| 3 | +import numpy as np |
| 4 | + |
| 5 | +def group_median_float64( |
| 6 | + out: np.ndarray, # ndarray[float64_t, ndim=2] |
| 7 | + counts: np.ndarray, # ndarray[int64_t] |
| 8 | + values: np.ndarray, # ndarray[float64_t, ndim=2] |
| 9 | + labels: np.ndarray, # ndarray[int64_t] |
| 10 | + min_count: int = ..., # Py_ssize_t |
| 11 | +) -> None: ... |
| 12 | + |
| 13 | +def group_cumprod_float64( |
| 14 | + out: np.ndarray, # float64_t[:, ::1] |
| 15 | + values: np.ndarray, # const float64_t[:, :] |
| 16 | + labels: np.ndarray, # const int64_t[:] |
| 17 | + ngroups: int, |
| 18 | + is_datetimelike: bool, |
| 19 | + skipna: bool = ..., |
| 20 | +) -> None: ... |
| 21 | + |
| 22 | +def group_cumsum( |
| 23 | + out: np.ndarray, # numeric[:, ::1] |
| 24 | + values: np.ndarray, # ndarray[numeric, ndim=2] |
| 25 | + labels: np.ndarray, # const int64_t[:] |
| 26 | + ngroups: int, |
| 27 | + is_datetimelike: bool, |
| 28 | + skipna: bool = ..., |
| 29 | +) -> None: ... |
| 30 | + |
| 31 | + |
| 32 | +def group_shift_indexer( |
| 33 | + out: np.ndarray, # int64_t[::1] |
| 34 | + labels: np.ndarray, # const int64_t[:] |
| 35 | + ngroups: int, |
| 36 | + periods: int, |
| 37 | +) -> None: ... |
| 38 | + |
| 39 | + |
| 40 | +def group_fillna_indexer( |
| 41 | + out: np.ndarray, # ndarray[int64_t] |
| 42 | + labels: np.ndarray, # ndarray[int64_t] |
| 43 | + mask: np.ndarray, # ndarray[uint8_t] |
| 44 | + direction: Literal["ffill", "bfill"], |
| 45 | + limit: int, # int64_t |
| 46 | + dropna: bool, |
| 47 | +) -> None: ... |
| 48 | + |
| 49 | + |
| 50 | +def group_any_all( |
| 51 | + out: np.ndarray, # uint8_t[::1] |
| 52 | + values: np.ndarray, # const uint8_t[::1] |
| 53 | + labels: np.ndarray, # const int64_t[:] |
| 54 | + mask: np.ndarray, # const uint8_t[::1] |
| 55 | + val_test: Literal["any", "all"], |
| 56 | + skipna: bool, |
| 57 | +) -> None: ... |
| 58 | + |
| 59 | +def group_add( |
| 60 | + out: np.ndarray, # complexfloating_t[:, ::1] |
| 61 | + counts: np.ndarray, # int64_t[::1] |
| 62 | + values: np.ndarray, # ndarray[complexfloating_t, ndim=2] |
| 63 | + labels: np.ndarray, # const intp_t[:] |
| 64 | + min_count: int = ... |
| 65 | +) -> None: ... |
| 66 | + |
| 67 | +def group_prod( |
| 68 | + out: np.ndarray, # floating[:, ::1] |
| 69 | + counts: np.ndarray, # int64_t[::1] |
| 70 | + values: np.ndarray, # ndarray[floating, ndim=2] |
| 71 | + labels: np.ndarray, # const intp_t[:] |
| 72 | + min_count: int = ... |
| 73 | +) -> None: ... |
| 74 | + |
| 75 | +def group_var( |
| 76 | + out: np.ndarray, # floating[:, ::1] |
| 77 | + counts: np.ndarray, # int64_t[::1] |
| 78 | + values: np.ndarray, # ndarray[floating, ndim=2] |
| 79 | + labels: np.ndarray, # const intp_t[:] |
| 80 | + min_count: int = ..., # Py_ssize_t |
| 81 | + ddof: int = ..., # int64_t |
| 82 | +) -> None: ... |
| 83 | + |
| 84 | +def group_mean( |
| 85 | + out: np.ndarray, # floating[:, ::1] |
| 86 | + counts: np.ndarray, # int64_t[::1] |
| 87 | + values: np.ndarray, # ndarray[floating, ndim=2] |
| 88 | + labels: np.ndarray, # const intp_t[:] |
| 89 | + min_count: int = ... |
| 90 | +) -> None: ... |
| 91 | + |
| 92 | +def group_ohlc( |
| 93 | + out: np.ndarray, # floating[:, ::1] |
| 94 | + counts: np.ndarray, # int64_t[::1] |
| 95 | + values: np.ndarray, # ndarray[floating, ndim=2] |
| 96 | + labels: np.ndarray, # const intp_t[:] |
| 97 | + min_count: int = ... |
| 98 | +) -> None: ... |
| 99 | + |
| 100 | +def group_quantile( |
| 101 | + out: np.ndarray, # ndarray[float64_t] |
| 102 | + values: np.ndarray, # ndarray[numeric, ndim=1] |
| 103 | + labels: np.ndarray, # ndarray[int64_t] |
| 104 | + mask: np.ndarray, # ndarray[uint8_t] |
| 105 | + q: float, # float64_t |
| 106 | + interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"], |
| 107 | +) -> None: ... |
| 108 | + |
| 109 | +def group_last( |
| 110 | + out: np.ndarray, # rank_t[:, ::1] |
| 111 | + counts: np.ndarray, # int64_t[::1] |
| 112 | + values: np.ndarray, # ndarray[rank_t, ndim=2] |
| 113 | + labels: np.ndarray, # const int64_t[:] |
| 114 | + min_count: int = ..., # Py_ssize_t |
| 115 | +) -> None: ... |
| 116 | + |
| 117 | +def group_nth( |
| 118 | + out: np.ndarray, # rank_t[:, ::1] |
| 119 | + counts: np.ndarray, # int64_t[::1] |
| 120 | + values: np.ndarray, # ndarray[rank_t, ndim=2] |
| 121 | + labels: np.ndarray, # const int64_t[:] |
| 122 | + min_count: int = ..., # int64_t |
| 123 | + rank: int = ..., # int64_t |
| 124 | +) -> None: ... |
| 125 | + |
| 126 | +def group_rank( |
| 127 | + out: np.ndarray, # float64_t[:, ::1] |
| 128 | + values: np.ndarray, # ndarray[rank_t, ndim=2] |
| 129 | + labels: np.ndarray, # const int64_t[:] |
| 130 | + ngroups: int, |
| 131 | + is_datetimelike: bool, |
| 132 | + ties_method: Literal["aveage", "min", "max", "first", "dense"] = ..., |
| 133 | + ascending: bool = ..., |
| 134 | + pct: bool = ..., |
| 135 | + na_option: Literal["keep", "top", "bottom"] = ..., |
| 136 | +) -> None: ... |
| 137 | + |
| 138 | +def group_max( |
| 139 | + out: np.ndarray, # groupby_t[:, ::1] |
| 140 | + counts: np.ndarray, # int64_t[::1] |
| 141 | + values: np.ndarray, # ndarray[groupby_t, ndim=2] |
| 142 | + labels: np.ndarray, # const int64_t[:] |
| 143 | + min_count: int = ..., |
| 144 | +) -> None: ... |
| 145 | + |
| 146 | +def group_min( |
| 147 | + out: np.ndarray, # groupby_t[:, ::1] |
| 148 | + counts: np.ndarray, # int64_t[::1] |
| 149 | + values: np.ndarray, # ndarray[groupby_t, ndim=2] |
| 150 | + labels: np.ndarray, # const int64_t[:] |
| 151 | + min_count: int = ..., |
| 152 | +) -> None: ... |
| 153 | + |
| 154 | +def group_cummin( |
| 155 | + out: np.ndarray, # groupby_t[:, ::1] |
| 156 | + values: np.ndarray, # ndarray[groupby_t, ndim=2] |
| 157 | + labels: np.ndarray, # const int64_t[:] |
| 158 | + ngroups: int, |
| 159 | + is_datetimelike: bool, |
| 160 | +) -> None: ... |
| 161 | + |
| 162 | +def group_cummax( |
| 163 | + out: np.ndarray, # groupby_t[:, ::1] |
| 164 | + values: np.ndarray, # ndarray[groupby_t, ndim=2] |
| 165 | + labels: np.ndarray, # const int64_t[:] |
| 166 | + ngroups: int, |
| 167 | + is_datetimelike: bool, |
| 168 | +) -> None: ... |
0 commit comments