@@ -524,11 +524,11 @@ def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False):
524
524
525
525
Parameters
526
526
----------
527
- xi : array_like
527
+ xi : array-like
528
528
sorted 1D array of x-coordinates
529
- yi : array_like or list of array-likes
529
+ yi : array-like or list of array-likes
530
530
yi[i][j] is the j-th derivative known at xi[i]
531
- order: None or int or array_like of ints. Default: None.
531
+ order: None or int or array-like of ints. Default: None.
532
532
Specifies the degree of local polynomials. If not None, some
533
533
derivatives are ignored.
534
534
der : int or list
@@ -546,7 +546,7 @@ def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False):
546
546
547
547
Returns
548
548
-------
549
- y : scalar or array_like
549
+ y : scalar or array-like
550
550
The result, of length R or length M or M by R.
551
551
"""
552
552
from scipy import interpolate
@@ -568,13 +568,13 @@ def _akima_interpolate(xi, yi, x, der=0, axis=0):
568
568
569
569
Parameters
570
570
----------
571
- xi : array_like
571
+ xi : array-like
572
572
A sorted list of x-coordinates, of length N.
573
- yi : array_like
573
+ yi : array-like
574
574
A 1-D array of real values. `yi`'s length along the interpolation
575
575
axis must be equal to the length of `xi`. If N-D array, use axis
576
576
parameter to select correct axis.
577
- x : scalar or array_like
577
+ x : scalar or array-like
578
578
Of length M.
579
579
der : int, optional
580
580
How many derivatives to extract; None for all potentially
@@ -590,7 +590,7 @@ def _akima_interpolate(xi, yi, x, der=0, axis=0):
590
590
591
591
Returns
592
592
-------
593
- y : scalar or array_like
593
+ y : scalar or array-like
594
594
The result, of length R or length M or M by R,
595
595
596
596
"""
@@ -609,14 +609,14 @@ def _cubicspline_interpolate(xi, yi, x, axis=0, bc_type="not-a-knot", extrapolat
609
609
610
610
Parameters
611
611
----------
612
- xi : array_like , shape (n,)
612
+ xi : array-like , shape (n,)
613
613
1-d array containing values of the independent variable.
614
614
Values must be real, finite and in strictly increasing order.
615
- yi : array_like
615
+ yi : array-like
616
616
Array containing values of the dependent variable. It can have
617
617
arbitrary number of dimensions, but the length along ``axis``
618
618
(see below) must match the length of ``x``. Values must be finite.
619
- x : scalar or array_like , shape (m,)
619
+ x : scalar or array-like , shape (m,)
620
620
axis : int, optional
621
621
Axis along which `y` is assumed to be varying. Meaning that for
622
622
``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
@@ -644,7 +644,7 @@ def _cubicspline_interpolate(xi, yi, x, axis=0, bc_type="not-a-knot", extrapolat
644
644
tuple `(order, deriv_values)` allowing to specify arbitrary
645
645
derivatives at curve ends:
646
646
* `order`: the derivative order, 1 or 2.
647
- * `deriv_value`: array_like containing derivative values, shape must
647
+ * `deriv_value`: array-like containing derivative values, shape must
648
648
be the same as `y`, excluding ``axis`` dimension. For example, if
649
649
`y` is 1D, then `deriv_value` must be a scalar. If `y` is 3D with
650
650
the shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2D
@@ -661,7 +661,7 @@ def _cubicspline_interpolate(xi, yi, x, axis=0, bc_type="not-a-knot", extrapolat
661
661
662
662
Returns
663
663
-------
664
- y : scalar or array_like
664
+ y : scalar or array-like
665
665
The result, of shape (m,)
666
666
667
667
References
0 commit comments