Skip to content

Commit 1e17bf6

Browse files
jbrockmendelJulianWgs
authored andcommitted
TYP: aggregations.pyx (pandas-dev#41029)
* TYP: aggregations.pyx * update per comments
1 parent b9691bb commit 1e17bf6

File tree

4 files changed

+183
-37
lines changed

4 files changed

+183
-37
lines changed

pandas/_libs/window/aggregations.pyi

+126
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,126 @@
1+
from typing import (
2+
Any,
3+
Callable,
4+
Literal,
5+
)
6+
7+
import numpy as np
8+
9+
def roll_sum(
10+
values: np.ndarray, # const float64_t[:]
11+
start: np.ndarray, # np.ndarray[np.int64]
12+
end: np.ndarray, # np.ndarray[np.int64]
13+
minp: int, # int64_t
14+
) -> np.ndarray: ... # np.ndarray[float]
15+
16+
def roll_mean(
17+
values: np.ndarray, # const float64_t[:]
18+
start: np.ndarray, # np.ndarray[np.int64]
19+
end: np.ndarray, # np.ndarray[np.int64]
20+
minp: int, # int64_t
21+
) -> np.ndarray: ... # np.ndarray[float]
22+
23+
def roll_var(
24+
values: np.ndarray, # const float64_t[:]
25+
start: np.ndarray, # np.ndarray[np.int64]
26+
end: np.ndarray, # np.ndarray[np.int64]
27+
minp: int, # int64_t
28+
ddof: int = ...,
29+
) -> np.ndarray: ... # np.ndarray[float]
30+
31+
def roll_skew(
32+
values: np.ndarray, # np.ndarray[np.float64]
33+
start: np.ndarray, # np.ndarray[np.int64]
34+
end: np.ndarray, # np.ndarray[np.int64]
35+
minp: int, # int64_t
36+
) -> np.ndarray: ... # np.ndarray[float]
37+
38+
def roll_kurt(
39+
values: np.ndarray, # np.ndarray[np.float64]
40+
start: np.ndarray, # np.ndarray[np.int64]
41+
end: np.ndarray, # np.ndarray[np.int64]
42+
minp: int, # int64_t
43+
) -> np.ndarray: ... # np.ndarray[float]
44+
45+
def roll_median_c(
46+
values: np.ndarray, # np.ndarray[np.float64]
47+
start: np.ndarray, # np.ndarray[np.int64]
48+
end: np.ndarray, # np.ndarray[np.int64]
49+
minp: int, # int64_t
50+
) -> np.ndarray: ... # np.ndarray[float]
51+
52+
def roll_max(
53+
values: np.ndarray, # np.ndarray[np.float64]
54+
start: np.ndarray, # np.ndarray[np.int64]
55+
end: np.ndarray, # np.ndarray[np.int64]
56+
minp: int, # int64_t
57+
) -> np.ndarray: ... # np.ndarray[float]
58+
59+
def roll_min(
60+
values: np.ndarray, # np.ndarray[np.float64]
61+
start: np.ndarray, # np.ndarray[np.int64]
62+
end: np.ndarray, # np.ndarray[np.int64]
63+
minp: int, # int64_t
64+
) -> np.ndarray: ... # np.ndarray[float]
65+
66+
def roll_quantile(
67+
values: np.ndarray, # const float64_t[:]
68+
start: np.ndarray, # np.ndarray[np.int64]
69+
end: np.ndarray, # np.ndarray[np.int64]
70+
minp: int, # int64_t
71+
quantile: float, # float64_t
72+
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
73+
) -> np.ndarray: ... # np.ndarray[float]
74+
75+
def roll_apply(
76+
obj: object,
77+
start: np.ndarray, # np.ndarray[np.int64]
78+
end: np.ndarray, # np.ndarray[np.int64]
79+
minp: int, # int64_t
80+
function: Callable[..., Any],
81+
raw: bool,
82+
args: tuple[Any, ...],
83+
kwargs: dict[str, Any],
84+
) -> np.ndarray: ... # np.ndarray[float] # FIXME: could also be type(obj) if n==0
85+
86+
def roll_weighted_sum(
87+
values: np.ndarray, # const float64_t[:]
88+
weights: np.ndarray, # const float64_t[:]
89+
minp: int,
90+
) -> np.ndarray: ... # np.ndarray[np.float64]
91+
92+
def roll_weighted_mean(
93+
values: np.ndarray, # const float64_t[:]
94+
weights: np.ndarray, # const float64_t[:]
95+
minp: int,
96+
) -> np.ndarray: ... # np.ndarray[np.float64]
97+
98+
def roll_weighted_var(
99+
values: np.ndarray, # const float64_t[:]
100+
weights: np.ndarray, # const float64_t[:]
101+
minp: int, # int64_t
102+
ddof: int, # unsigned int
103+
) -> np.ndarray: ... # np.ndarray[np.float64]
104+
105+
def ewma(
106+
vals: np.ndarray, # const float64_t[:]
107+
start: np.ndarray, # const int64_t[:]
108+
end: np.ndarray, # const int64_t[:]
109+
minp: int,
110+
com: float, # float64_t
111+
adjust: bool,
112+
ignore_na: bool,
113+
deltas: np.ndarray, # const float64_t[:]
114+
) -> np.ndarray: ... # np.ndarray[np.float64]
115+
116+
def ewmcov(
117+
input_x: np.ndarray, # const float64_t[:]
118+
start: np.ndarray, # const int64_t[:]
119+
end: np.ndarray, # const int64_t[:]
120+
minp: int,
121+
input_y: np.ndarray, # const float64_t[:]
122+
com: float, # float64_t
123+
adjust: bool,
124+
ignore_na: bool,
125+
bias: bool,
126+
) -> np.ndarray: ... # np.ndarray[np.float64]

0 commit comments

Comments
 (0)