@@ -11359,7 +11359,7 @@ def _doc_params(cls):
11359
11359
True
11360
11360
>>> pd.Series([True, False]).all()
11361
11361
False
11362
- >>> pd.Series([]).all()
11362
+ >>> pd.Series([], dtype="float64" ).all()
11363
11363
True
11364
11364
>>> pd.Series([np.nan]).all()
11365
11365
True
@@ -11727,7 +11727,7 @@ def _doc_params(cls):
11727
11727
False
11728
11728
>>> pd.Series([True, False]).any()
11729
11729
True
11730
- >>> pd.Series([]).any()
11730
+ >>> pd.Series([], dtype="float64" ).any()
11731
11731
False
11732
11732
>>> pd.Series([np.nan]).any()
11733
11733
False
@@ -11815,13 +11815,13 @@ def _doc_params(cls):
11815
11815
11816
11816
By default, the sum of an empty or all-NA Series is ``0``.
11817
11817
11818
- >>> pd.Series([]).sum() # min_count=0 is the default
11818
+ >>> pd.Series([], dtype="float64" ).sum() # min_count=0 is the default
11819
11819
0.0
11820
11820
11821
11821
This can be controlled with the ``min_count`` parameter. For example, if
11822
11822
you'd like the sum of an empty series to be NaN, pass ``min_count=1``.
11823
11823
11824
- >>> pd.Series([]).sum(min_count=1)
11824
+ >>> pd.Series([], dtype="float64" ).sum(min_count=1)
11825
11825
nan
11826
11826
11827
11827
Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
@@ -11862,12 +11862,12 @@ def _doc_params(cls):
11862
11862
--------
11863
11863
By default, the product of an empty or all-NA Series is ``1``
11864
11864
11865
- >>> pd.Series([]).prod()
11865
+ >>> pd.Series([], dtype="float64" ).prod()
11866
11866
1.0
11867
11867
11868
11868
This can be controlled with the ``min_count`` parameter
11869
11869
11870
- >>> pd.Series([]).prod(min_count=1)
11870
+ >>> pd.Series([], dtype="float64" ).prod(min_count=1)
11871
11871
nan
11872
11872
11873
11873
Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
0 commit comments