|
| 1 | +/** |
| 2 | + * 928. Minimize Malware Spread II |
| 3 | + * https://leetcode.com/problems/minimize-malware-spread-ii/ |
| 4 | + * Difficulty: Hard |
| 5 | + * |
| 6 | + * You are given a network of n nodes represented as an n x n adjacency matrix graph, where the |
| 7 | + * ith node is directly connected to the jth node if graph[i][j] == 1. |
| 8 | + * |
| 9 | + * Some nodes initial are initially infected by malware. Whenever two nodes are directly connected, |
| 10 | + * and at least one of those two nodes is infected by malware, both nodes will be infected by |
| 11 | + * malware. This spread of malware will continue until no more nodes can be infected in this manner. |
| 12 | + * |
| 13 | + * Suppose M(initial) is the final number of nodes infected with malware in the entire network after |
| 14 | + * the spread of malware stops. |
| 15 | + * |
| 16 | + * We will remove exactly one node from initial, completely removing it and any connections from |
| 17 | + * this node to any other node. |
| 18 | + * |
| 19 | + * Return the node that, if removed, would minimize M(initial). If multiple nodes could be removed |
| 20 | + * to minimize M(initial), return such a node with the smallest index. |
| 21 | + */ |
| 22 | + |
| 23 | +/** |
| 24 | + * @param {number[][]} graph |
| 25 | + * @param {number[]} initial |
| 26 | + * @return {number} |
| 27 | + */ |
| 28 | +var minMalwareSpread = function(graph, initial) { |
| 29 | + const n = graph.length; |
| 30 | + const initialSet = new Set(initial); |
| 31 | + |
| 32 | + initial.sort((a, b) => a - b); |
| 33 | + |
| 34 | + const infected = new Set(initial); |
| 35 | + const queue = [...initial]; |
| 36 | + |
| 37 | + for (let i = 0; i < queue.length; i++) { |
| 38 | + const node = queue[i]; |
| 39 | + for (let neighbor = 0; neighbor < n; neighbor++) { |
| 40 | + if (graph[node][neighbor] === 1 && !infected.has(neighbor)) { |
| 41 | + infected.add(neighbor); |
| 42 | + queue.push(neighbor); |
| 43 | + } |
| 44 | + } |
| 45 | + } |
| 46 | + |
| 47 | + const sourcesMap = new Array(n).fill().map(() => []); |
| 48 | + |
| 49 | + for (const initialNode of initial) { |
| 50 | + const reachable = new Set(); |
| 51 | + const visited = new Set(initial); |
| 52 | + visited.delete(initialNode); |
| 53 | + |
| 54 | + const q = [initialNode]; |
| 55 | + while (q.length > 0) { |
| 56 | + const node = q.shift(); |
| 57 | + reachable.add(node); |
| 58 | + |
| 59 | + for (let neighbor = 0; neighbor < n; neighbor++) { |
| 60 | + if (graph[node][neighbor] === 1 && !visited.has(neighbor)) { |
| 61 | + visited.add(neighbor); |
| 62 | + q.push(neighbor); |
| 63 | + } |
| 64 | + } |
| 65 | + } |
| 66 | + |
| 67 | + for (let node = 0; node < n; node++) { |
| 68 | + if (reachable.has(node) && !initialSet.has(node)) { |
| 69 | + sourcesMap[node].push(initialNode); |
| 70 | + } |
| 71 | + } |
| 72 | + } |
| 73 | + |
| 74 | + const savedCounts = new Map(); |
| 75 | + for (let node = 0; node < n; node++) { |
| 76 | + if (sourcesMap[node].length === 1) { |
| 77 | + const source = sourcesMap[node][0]; |
| 78 | + savedCounts.set(source, (savedCounts.get(source) || 0) + 1); |
| 79 | + } |
| 80 | + } |
| 81 | + |
| 82 | + let maxSaved = 0; |
| 83 | + let result = initial[0]; |
| 84 | + |
| 85 | + for (const node of initial) { |
| 86 | + const saved = savedCounts.get(node) || 0; |
| 87 | + if (saved > maxSaved) { |
| 88 | + maxSaved = saved; |
| 89 | + result = node; |
| 90 | + } else if (saved === maxSaved && node < result) { |
| 91 | + result = node; |
| 92 | + } |
| 93 | + } |
| 94 | + |
| 95 | + return result; |
| 96 | +}; |
0 commit comments