.. currentmodule:: pandas
.. ipython:: python :suppress: import numpy as np np.random.seed(123456) import pandas as pd pd.options.display.max_rows=15 randn = np.random.randn np.set_printoptions(precision=4, suppress=True) import matplotlib.pyplot as plt plt.close('all') import pandas.util._doctools as doctools p = doctools.TablePlotter()
pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.
The :func:`~pandas.concat` function (in the main pandas namespace) does all of the heavy lifting of performing concatenation operations along an axis while performing optional set logic (union or intersection) of the indexes (if any) on the other axes. Note that I say "if any" because there is only a single possible axis of concatenation for Series.
Before diving into all of the details of concat
and what it can do, here is
a simple example:
.. ipython:: python df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=[0, 1, 2, 3]) df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], 'B': ['B4', 'B5', 'B6', 'B7'], 'C': ['C4', 'C5', 'C6', 'C7'], 'D': ['D4', 'D5', 'D6', 'D7']}, index=[4, 5, 6, 7]) df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'], 'B': ['B8', 'B9', 'B10', 'B11'], 'C': ['C8', 'C9', 'C10', 'C11'], 'D': ['D8', 'D9', 'D10', 'D11']}, index=[8, 9, 10, 11]) frames = [df1, df2, df3] result = pd.concat(frames)
.. ipython:: python :suppress: @savefig merging_concat_basic.png p.plot(frames, result, labels=['df1', 'df2', 'df3'], vertical=True); plt.close('all');
Like its sibling function on ndarrays, numpy.concatenate
, pandas.concat
takes a list or dict of homogeneously-typed objects and concatenates them with
some configurable handling of "what to do with the other axes":
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
objs
: a sequence or mapping of Series, DataFrame, or Panel objects. If a dict is passed, the sorted keys will be used as the keys argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised.axis
: {0, 1, ...}, default 0. The axis to concatenate along.join
: {'inner', 'outer'}, default 'outer'. How to handle indexes on other axis(es). Outer for union and inner for intersection.ignore_index
: boolean, default False. If True, do not use the index values on the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join.join_axes
: list of Index objects. Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic.keys
: sequence, default None. Construct hierarchical index using the passed keys as the outermost level. If multiple levels passed, should contain tuples.levels
: list of sequences, default None. Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys.names
: list, default None. Names for the levels in the resulting hierarchical index.verify_integrity
: boolean, default False. Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation.copy
: boolean, default True. If False, do not copy data unnecessarily.
Without a little bit of context many of these arguments don't make much sense.
Let's revisit the above example. Suppose we wanted to associate specific keys
with each of the pieces of the chopped up DataFrame. We can do this using the
keys
argument:
.. ipython:: python result = pd.concat(frames, keys=['x', 'y', 'z'])
.. ipython:: python :suppress: @savefig merging_concat_keys.png p.plot(frames, result, labels=['df1', 'df2', 'df3'], vertical=True) plt.close('all');
As you can see (if you've read the rest of the documentation), the resulting object's index has a :ref:`hierarchical index <advanced.hierarchical>`. This means that we can now select out each chunk by key:
.. ipython:: python result.loc['y']
It's not a stretch to see how this can be very useful. More detail on this functionality below.
Note
It is worth noting that :func:`~pandas.concat` (and therefore :func:`~pandas.append`) makes a full copy of the data, and that constantly reusing this function can create a significant performance hit. If you need to use the operation over several datasets, use a list comprehension.
frames = [ process_your_file(f) for f in files ] result = pd.concat(frames)
When gluing together multiple DataFrames, you have a choice of how to handle the other axes (other than the one being concatenated). This can be done in the following three ways:
- Take the (sorted) union of them all,
join='outer'
. This is the default option as it results in zero information loss. - Take the intersection,
join='inner'
. - Use a specific index, as passed to the
join_axes
argument.
Here is an example of each of these methods. First, the default join='outer'
behavior:
.. ipython:: python df4 = pd.DataFrame({'B': ['B2', 'B3', 'B6', 'B7'], 'D': ['D2', 'D3', 'D6', 'D7'], 'F': ['F2', 'F3', 'F6', 'F7']}, index=[2, 3, 6, 7]) result = pd.concat([df1, df4], axis=1)
.. ipython:: python :suppress: @savefig merging_concat_axis1.png p.plot([df1, df4], result, labels=['df1', 'df4'], vertical=False); plt.close('all');
Note that the row indexes have been unioned and sorted. Here is the same thing
with join='inner'
:
.. ipython:: python result = pd.concat([df1, df4], axis=1, join='inner')
.. ipython:: python :suppress: @savefig merging_concat_axis1_inner.png p.plot([df1, df4], result, labels=['df1', 'df4'], vertical=False); plt.close('all');
Lastly, suppose we just wanted to reuse the exact index from the original DataFrame:
.. ipython:: python result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])
.. ipython:: python :suppress: @savefig merging_concat_axis1_join_axes.png p.plot([df1, df4], result, labels=['df1', 'df4'], vertical=False); plt.close('all');
A useful shortcut to :func:`~pandas.concat` are the :meth:`~DataFrame.append`
instance methods on Series
and DataFrame
. These methods actually predated
concat
. They concatenate along axis=0
, namely the index:
.. ipython:: python result = df1.append(df2)
.. ipython:: python :suppress: @savefig merging_append1.png p.plot([df1, df2], result, labels=['df1', 'df2'], vertical=True); plt.close('all');
In the case of DataFrame
, the indexes must be disjoint but the columns do not
need to be:
.. ipython:: python result = df1.append(df4)
.. ipython:: python :suppress: @savefig merging_append2.png p.plot([df1, df4], result, labels=['df1', 'df4'], vertical=True); plt.close('all');
append
may take multiple objects to concatenate:
.. ipython:: python result = df1.append([df2, df3])
.. ipython:: python :suppress: @savefig merging_append3.png p.plot([df1, df2, df3], result, labels=['df1', 'df2', 'df3'], vertical=True); plt.close('all');
Note
Unlike the :py:meth:`~list.append` method, which appends to the original list
and returns None
, :meth:`~DataFrame.append` here does not modify
df1
and returns its copy with df2
appended.
For DataFrame``s which don't have a meaningful index, you may wish to append
them and ignore the fact that they may have overlapping indexes. To do this, use
the ``ignore_index
argument:
.. ipython:: python result = pd.concat([df1, df4], ignore_index=True)
.. ipython:: python :suppress: @savefig merging_concat_ignore_index.png p.plot([df1, df4], result, labels=['df1', 'df4'], vertical=True); plt.close('all');
This is also a valid argument to :meth:`DataFrame.append`:
.. ipython:: python result = df1.append(df4, ignore_index=True)
.. ipython:: python :suppress: @savefig merging_append_ignore_index.png p.plot([df1, df4], result, labels=['df1', 'df4'], vertical=True); plt.close('all');
You can concatenate a mix of Series
and DataFrame``s. The
``Series
will be transformed to DataFrame
with the column name as
the name of the Series
.
.. ipython:: python s1 = pd.Series(['X0', 'X1', 'X2', 'X3'], name='X') result = pd.concat([df1, s1], axis=1)
.. ipython:: python :suppress: @savefig merging_concat_mixed_ndim.png p.plot([df1, s1], result, labels=['df1', 's1'], vertical=False); plt.close('all');
Note
Since we're concatenating a Series
to a DataFrame
, we could have
achieved the same result with :meth:`DataFrame.assign`. To concatenate an
arbitrary number of pandas objects (DataFrame
or Series
), use
concat
.
If unnamed Series
are passed they will be numbered consecutively.
.. ipython:: python s2 = pd.Series(['_0', '_1', '_2', '_3']) result = pd.concat([df1, s2, s2, s2], axis=1)
.. ipython:: python :suppress: @savefig merging_concat_unnamed_series.png p.plot([df1, s2], result, labels=['df1', 's2'], vertical=False); plt.close('all');
Passing ignore_index=True
will drop all name references.
.. ipython:: python result = pd.concat([df1, s1], axis=1, ignore_index=True)
.. ipython:: python :suppress: @savefig merging_concat_series_ignore_index.png p.plot([df1, s1], result, labels=['df1', 's1'], vertical=False); plt.close('all');
A fairly common use of the keys
argument is to override the column names
when creating a new DataFrame
based on existing Series
.
Notice how the default behaviour consists on letting the resulting DataFrame
inherit the parent Series
' name, when these existed.
.. ipython:: python s3 = pd.Series([0, 1, 2, 3], name='foo') s4 = pd.Series([0, 1, 2, 3]) s5 = pd.Series([0, 1, 4, 5]) pd.concat([s3, s4, s5], axis=1)
Through the keys
argument we can override the existing column names.
.. ipython:: python pd.concat([s3, s4, s5], axis=1, keys=['red','blue','yellow'])
Let's consider a variation of the very first example presented:
.. ipython:: python result = pd.concat(frames, keys=['x', 'y', 'z'])
.. ipython:: python :suppress: @savefig merging_concat_group_keys2.png p.plot(frames, result, labels=['df1', 'df2', 'df3'], vertical=True); plt.close('all');
You can also pass a dict to concat
in which case the dict keys will be used
for the keys
argument (unless other keys are specified):
.. ipython:: python pieces = {'x': df1, 'y': df2, 'z': df3} result = pd.concat(pieces)
.. ipython:: python :suppress: @savefig merging_concat_dict.png p.plot([df1, df2, df3], result, labels=['df1', 'df2', 'df3'], vertical=True); plt.close('all');
.. ipython:: python result = pd.concat(pieces, keys=['z', 'y'])
.. ipython:: python :suppress: @savefig merging_concat_dict_keys.png p.plot([df1, df2, df3], result, labels=['df1', 'df2', 'df3'], vertical=True); plt.close('all');
The MultiIndex created has levels that are constructed from the passed keys and
the index of the DataFrame
pieces:
.. ipython:: python result.index.levels
If you wish to specify other levels (as will occasionally be the case), you can
do so using the levels
argument:
.. ipython:: python result = pd.concat(pieces, keys=['x', 'y', 'z'], levels=[['z', 'y', 'x', 'w']], names=['group_key'])
.. ipython:: python :suppress: @savefig merging_concat_dict_keys_names.png p.plot([df1, df2, df3], result, labels=['df1', 'df2', 'df3'], vertical=True); plt.close('all');
.. ipython:: python result.index.levels
This is fairly esoteric, but it is actually necessary for implementing things like GroupBy where the order of a categorical variable is meaningful.
While not especially efficient (since a new object must be created), you can
append a single row to a DataFrame
by passing a Series
or dict to
append
, which returns a new DataFrame
as above.
.. ipython:: python s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D']) result = df1.append(s2, ignore_index=True)
.. ipython:: python :suppress: @savefig merging_append_series_as_row.png p.plot([df1, s2], result, labels=['df1', 's2'], vertical=True); plt.close('all');
You should use ignore_index
with this method to instruct DataFrame to
discard its index. If you wish to preserve the index, you should construct an
appropriately-indexed DataFrame and append or concatenate those objects.
You can also pass a list of dicts or Series:
.. ipython:: python dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4}, {'A': 5, 'B': 6, 'C': 7, 'Y': 8}] result = df1.append(dicts, ignore_index=True)
.. ipython:: python :suppress: @savefig merging_append_dits.png p.plot([df1, pd.DataFrame(dicts)], result, labels=['df1', 'dicts'], vertical=True); plt.close('all');
pandas has full-featured, high performance in-memory join operations
idiomatically very similar to relational databases like SQL. These methods
perform significantly better (in some cases well over an order of magnitude
better) than other open source implementations (like base::merge.data.frame
in R). The reason for this is careful algorithmic design and the internal layout
of the data in DataFrame
.
See the :ref:`cookbook<cookbook.merge>` for some advanced strategies.
Users who are familiar with SQL but new to pandas might be interested in a :ref:`comparison with SQL<compare_with_sql.join>`.
pandas provides a single function, :func:`~pandas.merge`, as the entry point for
all standard database join operations between DataFrame
objects:
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
left
: A DataFrame object.right
: Another DataFrame object.on
: Column or index level names to join on. Must be found in both the left and right DataFrame objects. If not passed andleft_index
andright_index
areFalse
, the intersection of the columns in the DataFrames will be inferred to be the join keys.left_on
: Columns or index levels from the left DataFrame to use as keys. Can either be column names, index level names, or arrays with length equal to the length of the DataFrame.right_on
: Columns or index levels from the right DataFrame to use as keys. Can either be column names, index level names, or arrays with length equal to the length of the DataFrame.left_index
: IfTrue
, use the index (row labels) from the left DataFrame as its join key(s). In the case of a DataFrame with a MultiIndex (hierarchical), the number of levels must match the number of join keys from the right DataFrame.right_index
: Same usage asleft_index
for the right DataFramehow
: One of'left'
,'right'
,'outer'
,'inner'
. Defaults toinner
. See below for more detailed description of each method.sort
: Sort the result DataFrame by the join keys in lexicographical order. Defaults toTrue
, setting toFalse
will improve performance substantially in many cases.suffixes
: A tuple of string suffixes to apply to overlapping columns. Defaults to('_x', '_y')
.copy
: Always copy data (defaultTrue
) from the passed DataFrame objects, even when reindexing is not necessary. Cannot be avoided in many cases but may improve performance / memory usage. The cases where copying can be avoided are somewhat pathological but this option is provided nonetheless.indicator
: Add a column to the output DataFrame called_merge
with information on the source of each row._merge
is Categorical-type and takes on a value ofleft_only
for observations whose merge key only appears in'left'
DataFrame,right_only
for observations whose merge key only appears in'right'
DataFrame, andboth
if the observation's merge key is found in both.validate
: string, default None. If specified, checks if merge is of specified type.- "one_to_one" or "1:1": checks if merge keys are unique in both left and right datasets.
- "one_to_many" or "1:m": checks if merge keys are unique in left dataset.
- "many_to_one" or "m:1": checks if merge keys are unique in right dataset.
- "many_to_many" or "m:m": allowed, but does not result in checks.
.. versionadded:: 0.21.0
Note
Support for specifying index levels as the on
, left_on
, and
right_on
parameters was added in version 0.23.0.
The return type will be the same as left
. If left
is a DataFrame
and right
is a subclass of DataFrame, the return type will still be
DataFrame
.
merge
is a function in the pandas namespace, and it is also available as a
DataFrame
instance method :meth:`~DataFrame.merge`, with the calling
``DataFrame `` being implicitly considered the left object in the join.
The related :meth:`~DataFrame.join` method, uses merge
internally for the
index-on-index (by default) and column(s)-on-index join. If you are joining on
index only, you may wish to use DataFrame.join
to save yourself some typing.
Experienced users of relational databases like SQL will be familiar with the
terminology used to describe join operations between two SQL-table like
structures (DataFrame
objects). There are several cases to consider which
are very important to understand:
- one-to-one joins: for example when joining two
DataFrame
objects on their indexes (which must contain unique values). - many-to-one joins: for example when joining an index (unique) to one or
more columns in a different
DataFrame
. - many-to-many joins: joining columns on columns.
Note
When joining columns on columns (potentially a many-to-many join), any
indexes on the passed DataFrame
objects will be discarded.
It is worth spending some time understanding the result of the many-to-many join case. In SQL / standard relational algebra, if a key combination appears more than once in both tables, the resulting table will have the Cartesian product of the associated data. Here is a very basic example with one unique key combination:
.. ipython:: python left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) result = pd.merge(left, right, on='key')
.. ipython:: python :suppress: @savefig merging_merge_on_key.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
Here is a more complicated example with multiple join keys. Only the keys
appearing in left
and right
are present (the intersection), since
how='inner'
by default.
.. ipython:: python left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'], 'key2': ['K0', 'K1', 'K0', 'K1'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'], 'key2': ['K0', 'K0', 'K0', 'K0'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) result = pd.merge(left, right, on=['key1', 'key2'])
.. ipython:: python :suppress: @savefig merging_merge_on_key_multiple.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
The how
argument to merge
specifies how to determine which keys are to
be included in the resulting table. If a key combination does not appear in
either the left or right tables, the values in the joined table will be
NA
. Here is a summary of the how
options and their SQL equivalent names:
Merge method | SQL Join Name | Description |
---|---|---|
left |
LEFT OUTER JOIN |
Use keys from left frame only |
right |
RIGHT OUTER JOIN |
Use keys from right frame only |
outer |
FULL OUTER JOIN |
Use union of keys from both frames |
inner |
INNER JOIN |
Use intersection of keys from both frames |
.. ipython:: python result = pd.merge(left, right, how='left', on=['key1', 'key2'])
.. ipython:: python :suppress: @savefig merging_merge_on_key_left.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
.. ipython:: python result = pd.merge(left, right, how='right', on=['key1', 'key2'])
.. ipython:: python :suppress: @savefig merging_merge_on_key_right.png p.plot([left, right], result, labels=['left', 'right'], vertical=False);
.. ipython:: python result = pd.merge(left, right, how='outer', on=['key1', 'key2'])
.. ipython:: python :suppress: @savefig merging_merge_on_key_outer.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
.. ipython:: python result = pd.merge(left, right, how='inner', on=['key1', 'key2'])
.. ipython:: python :suppress: @savefig merging_merge_on_key_inner.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
Here is another example with duplicate join keys in DataFrames:
.. ipython:: python left = pd.DataFrame({'A' : [1,2], 'B' : [2, 2]}) right = pd.DataFrame({'A' : [4,5,6], 'B': [2,2,2]}) result = pd.merge(left, right, on='B', how='outer')
.. ipython:: python :suppress: @savefig merging_merge_on_key_dup.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
Warning
Joining / merging on duplicate keys can cause a returned frame that is the multiplication of the row dimensions, which may result in memory overflow. It is the user' s responsibility to manage duplicate values in keys before joining large DataFrames.
.. versionadded:: 0.21.0
Users can use the validate
argument to automatically check whether there
are unexpected duplicates in their merge keys. Key uniqueness is checked before
merge operations and so should protect against memory overflows. Checking key
uniqueness is also a good way to ensure user data structures are as expected.
In the following example, there are duplicate values of B
in the right
DataFrame
. As this is not a one-to-one merge -- as specified in the
validate
argument -- an exception will be raised.
.. ipython:: python left = pd.DataFrame({'A' : [1,2], 'B' : [1, 2]}) right = pd.DataFrame({'A' : [4,5,6], 'B': [2, 2, 2]})
In [53]: result = pd.merge(left, right, on='B', how='outer', validate="one_to_one")
...
MergeError: Merge keys are not unique in right dataset; not a one-to-one merge
If the user is aware of the duplicates in the right DataFrame
but wants to
ensure there are no duplicates in the left DataFrame, one can use the
validate='one_to_many'
argument instead, which will not raise an exception.
.. ipython:: python pd.merge(left, right, on='B', how='outer', validate="one_to_many")
:func:`~pandas.merge` accepts the argument indicator
. If True
, a
Categorical-type column called _merge
will be added to the output object
that takes on values:
Observation Origin _merge
valueMerge key only in 'left'
frameleft_only
Merge key only in 'right'
frameright_only
Merge key in both frames both
.. ipython:: python df1 = pd.DataFrame({'col1': [0, 1], 'col_left':['a', 'b']}) df2 = pd.DataFrame({'col1': [1, 2, 2],'col_right':[2, 2, 2]}) pd.merge(df1, df2, on='col1', how='outer', indicator=True)
The indicator
argument will also accept string arguments, in which case the indicator function will use the value of the passed string as the name for the indicator column.
.. ipython:: python pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
.. versionadded:: 0.19.0
Merging will preserve the dtype of the join keys.
.. ipython:: python left = pd.DataFrame({'key': [1], 'v1': [10]}) left right = pd.DataFrame({'key': [1, 2], 'v1': [20, 30]}) right
We are able to preserve the join keys:
.. ipython:: python pd.merge(left, right, how='outer') pd.merge(left, right, how='outer').dtypes
Of course if you have missing values that are introduced, then the resulting dtype will be upcast.
.. ipython:: python pd.merge(left, right, how='outer', on='key') pd.merge(left, right, how='outer', on='key').dtypes
.. versionadded:: 0.20.0
Merging will preserve category
dtypes of the mergands. See also the section on :ref:`categoricals <categorical.merge>`.
The left frame.
.. ipython:: python from pandas.api.types import CategoricalDtype X = pd.Series(np.random.choice(['foo', 'bar'], size=(10,))) X = X.astype(CategoricalDtype(categories=['foo', 'bar'])) left = pd.DataFrame({'X': X, 'Y': np.random.choice(['one', 'two', 'three'], size=(10,))}) left left.dtypes
The right frame.
.. ipython:: python right = pd.DataFrame({ 'X': pd.Series(['foo', 'bar'], dtype=CategoricalDtype(['foo', 'bar'])), 'Z': [1, 2] }) right right.dtypes
The merged result:
.. ipython:: python result = pd.merge(left, right, how='outer') result result.dtypes
Note
The category dtypes must be exactly the same, meaning the same categories and the ordered attribute.
Otherwise the result will coerce to object
dtype.
Note
Merging on category
dtypes that are the same can be quite performant compared to object
dtype merging.
:meth:`DataFrame.join` is a convenient method for combining the columns of two
potentially differently-indexed DataFrames
into a single result
DataFrame
. Here is a very basic example:
.. ipython:: python left = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']}, index=['K0', 'K1', 'K2']) right = pd.DataFrame({'C': ['C0', 'C2', 'C3'], 'D': ['D0', 'D2', 'D3']}, index=['K0', 'K2', 'K3']) result = left.join(right)
.. ipython:: python :suppress: @savefig merging_join.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
.. ipython:: python result = left.join(right, how='outer')
.. ipython:: python :suppress: @savefig merging_join_outer.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
The same as above, but with how='inner'
.
.. ipython:: python result = left.join(right, how='inner')
.. ipython:: python :suppress: @savefig merging_join_inner.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
The data alignment here is on the indexes (row labels). This same behavior can
be achieved using merge
plus additional arguments instructing it to use the
indexes:
.. ipython:: python result = pd.merge(left, right, left_index=True, right_index=True, how='outer')
.. ipython:: python :suppress: @savefig merging_merge_index_outer.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
.. ipython:: python result = pd.merge(left, right, left_index=True, right_index=True, how='inner');
.. ipython:: python :suppress: @savefig merging_merge_index_inner.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
:meth:`~DataFrame.join` takes an optional on
argument which may be a column
or multiple column names, which specifies that the passed DataFrame
is to be
aligned on that column in the DataFrame
. These two function calls are
completely equivalent:
left.join(right, on=key_or_keys) pd.merge(left, right, left_on=key_or_keys, right_index=True, how='left', sort=False)
Obviously you can choose whichever form you find more convenient. For
many-to-one joins (where one of the DataFrame
's is already indexed by the
join key), using join
may be more convenient. Here is a simple example:
.. ipython:: python left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'key': ['K0', 'K1', 'K0', 'K1']}) right = pd.DataFrame({'C': ['C0', 'C1'], 'D': ['D0', 'D1']}, index=['K0', 'K1']) result = left.join(right, on='key')
.. ipython:: python :suppress: @savefig merging_join_key_columns.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
.. ipython:: python result = pd.merge(left, right, left_on='key', right_index=True, how='left', sort=False);
.. ipython:: python :suppress: @savefig merging_merge_key_columns.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
To join on multiple keys, the passed DataFrame must have a MultiIndex
:
.. ipython:: python left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'key1': ['K0', 'K0', 'K1', 'K2'], 'key2': ['K0', 'K1', 'K0', 'K1']}) index = pd.MultiIndex.from_tuples([('K0', 'K0'), ('K1', 'K0'), ('K2', 'K0'), ('K2', 'K1')]) right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=index)
Now this can be joined by passing the two key column names:
.. ipython:: python result = left.join(right, on=['key1', 'key2'])
.. ipython:: python :suppress: @savefig merging_join_multikeys.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
The default for DataFrame.join
is to perform a left join (essentially a
"VLOOKUP" operation, for Excel users), which uses only the keys found in the
calling DataFrame. Other join types, for example inner join, can be just as
easily performed:
.. ipython:: python result = left.join(right, on=['key1', 'key2'], how='inner')
.. ipython:: python :suppress: @savefig merging_join_multikeys_inner.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
As you can see, this drops any rows where there was no match.
You can join a singly-indexed DataFrame
with a level of a multi-indexed DataFrame
.
The level will match on the name of the index of the singly-indexed frame against
a level name of the multi-indexed frame.
.. ipython:: python left = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']}, index=pd.Index(['K0', 'K1', 'K2'], name='key')) index = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'), ('K2', 'Y2'), ('K2', 'Y3')], names=['key', 'Y']) right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=index) result = left.join(right, how='inner')
.. ipython:: python :suppress: @savefig merging_join_multiindex_inner.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
This is equivalent but less verbose and more memory efficient / faster than this.
.. ipython:: python result = pd.merge(left.reset_index(), right.reset_index(), on=['key'], how='inner').set_index(['key','Y'])
.. ipython:: python :suppress: @savefig merging_merge_multiindex_alternative.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
This is supported in a limited way, provided that the index for the right argument is completely used in the join, and is a subset of the indices in the left argument, as in this example:
.. ipython:: python leftindex = pd.MultiIndex.from_product([list('abc'), list('xy'), [1, 2]], names=['abc', 'xy', 'num']) left = pd.DataFrame({'v1' : range(12)}, index=leftindex) left rightindex = pd.MultiIndex.from_product([list('abc'), list('xy')], names=['abc', 'xy']) right = pd.DataFrame({'v2': [100*i for i in range(1, 7)]}, index=rightindex) right left.join(right, on=['abc', 'xy'], how='inner')
If that condition is not satisfied, a join with two multi-indexes can be done using the following code.
.. ipython:: python leftindex = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'), ('K1', 'X2')], names=['key', 'X']) left = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']}, index=leftindex) rightindex = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'), ('K2', 'Y2'), ('K2', 'Y3')], names=['key', 'Y']) right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=rightindex) result = pd.merge(left.reset_index(), right.reset_index(), on=['key'], how='inner').set_index(['key','X','Y'])
.. ipython:: python :suppress: @savefig merging_merge_two_multiindex.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
.. versionadded:: 0.23
Strings passed as the on
, left_on
, and right_on
parameters
may refer to either column names or index level names. This enables merging
DataFrame
instances on a combination of index levels and columns without
resetting indexes.
.. ipython:: python left_index = pd.Index(['K0', 'K0', 'K1', 'K2'], name='key1') left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'key2': ['K0', 'K1', 'K0', 'K1']}, index=left_index) right_index = pd.Index(['K0', 'K1', 'K2', 'K2'], name='key1') right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3'], 'key2': ['K0', 'K0', 'K0', 'K1']}, index=right_index) result = left.merge(right, on=['key1', 'key2'])
.. ipython:: python :suppress: @savefig merge_on_index_and_column.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
Note
When DataFrames are merged on a string that matches an index level in both frames, the index level is preserved as an index level in the resulting DataFrame.
Note
When DataFrames are merged using only some of the levels of a MultiIndex,
the extra levels will be dropped from the resulting merge. In order to
preserve those levels, use reset_index
on those level names to move
those levels to columns prior to doing the merge.
Note
If a string matches both a column name and an index level name, then a warning is issued and the column takes precedence. This will result in an ambiguity error in a future version.
The merge suffixes
argument takes a tuple of list of strings to append to
overlapping column names in the input ``DataFrame``s to disambiguate the result
columns:
.. ipython:: python left = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'v': [1, 2, 3]}) right = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'v': [4, 5, 6]}) result = pd.merge(left, right, on='k')
.. ipython:: python :suppress: @savefig merging_merge_overlapped.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
.. ipython:: python result = pd.merge(left, right, on='k', suffixes=['_l', '_r'])
.. ipython:: python :suppress: @savefig merging_merge_overlapped_suffix.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
:meth:`DataFrame.join` has lsuffix
and rsuffix
arguments which behave
similarly.
.. ipython:: python left = left.set_index('k') right = right.set_index('k') result = left.join(right, lsuffix='_l', rsuffix='_r')
.. ipython:: python :suppress: @savefig merging_merge_overlapped_multi_suffix.png p.plot([left, right], result, labels=['left', 'right'], vertical=False); plt.close('all');
A list or tuple of DataFrames
can also be passed to :meth:`~DataFrame.join`
to join them together on their indexes.
.. ipython:: python right2 = pd.DataFrame({'v': [7, 8, 9]}, index=['K1', 'K1', 'K2']) result = left.join([right, right2])
.. ipython:: python :suppress: @savefig merging_join_multi_df.png p.plot([left, right, right2], result, labels=['left', 'right', 'right2'], vertical=False); plt.close('all');
Another fairly common situation is to have two like-indexed (or similarly
indexed) Series
or DataFrame
objects and wanting to "patch" values in
one object from values for matching indices in the other. Here is an example:
.. ipython:: python df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan], [np.nan, 7., np.nan]]) df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]], index=[1, 2])
For this, use the :meth:`~DataFrame.combine_first` method:
.. ipython:: python result = df1.combine_first(df2)
.. ipython:: python :suppress: @savefig merging_combine_first.png p.plot([df1, df2], result, labels=['df1', 'df2'], vertical=False); plt.close('all');
Note that this method only takes values from the right DataFrame
if they are
missing in the left DataFrame
. A related method, :meth:`~DataFrame.update`,
alters non-NA values inplace:
.. ipython:: python :suppress: df1_copy = df1.copy()
.. ipython:: python df1.update(df2)
.. ipython:: python :suppress: @savefig merging_update.png p.plot([df1_copy, df2], df1, labels=['df1', 'df2'], vertical=False); plt.close('all');
A :func:`merge_ordered` function allows combining time series and other
ordered data. In particular it has an optional fill_method
keyword to
fill/interpolate missing data:
.. ipython:: python left = pd.DataFrame({'k': ['K0', 'K1', 'K1', 'K2'], 'lv': [1, 2, 3, 4], 's': ['a', 'b', 'c', 'd']}) right = pd.DataFrame({'k': ['K1', 'K2', 'K4'], 'rv': [1, 2, 3]}) pd.merge_ordered(left, right, fill_method='ffill', left_by='s')
.. versionadded:: 0.19.0
A :func:`merge_asof` is similar to an ordered left-join except that we match on
nearest key rather than equal keys. For each row in the left
DataFrame
,
we select the last row in the right
DataFrame
whose on
key is less
than the left's key. Both DataFrames must be sorted by the key.
Optionally an asof merge can perform a group-wise merge. This matches the
by
key equally, in addition to the nearest match on the on
key.
For example; we might have trades
and quotes
and we want to asof
merge them.
.. ipython:: python trades = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.038', '20160525 13:30:00.048', '20160525 13:30:00.048', '20160525 13:30:00.048']), 'ticker': ['MSFT', 'MSFT', 'GOOG', 'GOOG', 'AAPL'], 'price': [51.95, 51.95, 720.77, 720.92, 98.00], 'quantity': [75, 155, 100, 100, 100]}, columns=['time', 'ticker', 'price', 'quantity']) quotes = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.023', '20160525 13:30:00.030', '20160525 13:30:00.041', '20160525 13:30:00.048', '20160525 13:30:00.049', '20160525 13:30:00.072', '20160525 13:30:00.075']), 'ticker': ['GOOG', 'MSFT', 'MSFT', 'MSFT', 'GOOG', 'AAPL', 'GOOG', 'MSFT'], 'bid': [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01], 'ask': [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03]}, columns=['time', 'ticker', 'bid', 'ask'])
.. ipython:: python trades quotes
By default we are taking the asof of the quotes.
.. ipython:: python pd.merge_asof(trades, quotes, on='time', by='ticker')
We only asof within 2ms
between the quote time and the trade time.
.. ipython:: python pd.merge_asof(trades, quotes, on='time', by='ticker', tolerance=pd.Timedelta('2ms'))
We only asof within 10ms
between the quote time and the trade time and we
exclude exact matches on time. Note that though we exclude the exact matches
(of the quotes), prior quotes do propagate to that point in time.
.. ipython:: python pd.merge_asof(trades, quotes, on='time', by='ticker', tolerance=pd.Timedelta('10ms'), allow_exact_matches=False)