forked from pandas-dev/pandas-stubs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterval.pyi
426 lines (418 loc) · 12.6 KB
/
interval.pyi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
from collections.abc import (
Hashable,
Sequence,
)
import datetime as dt
from typing import (
Generic,
Literal,
overload,
)
import numpy as np
import pandas as pd
from pandas import Index
from pandas.core.indexes.base import (
_FloatIndexType,
_IntIndexType,
)
from pandas.core.indexes.extension import ExtensionIndex
from pandas.core.series import (
Series,
TimedeltaSeries,
TimestampSeries,
)
from typing_extensions import TypeAlias
from pandas._libs.interval import (
Interval as Interval,
IntervalMixin,
)
from pandas._libs.tslibs.offsets import BaseOffset
from pandas._typing import (
DatetimeLike,
DtypeArg,
FillnaOptions,
IntervalClosedType,
IntervalT,
Label,
np_ndarray_anyint,
np_ndarray_bool,
npt,
)
from pandas.core.dtypes.dtypes import IntervalDtype as IntervalDtype
from pandas.core.dtypes.generic import ABCSeries
_EdgesInt: TypeAlias = (
Sequence[int]
| npt.NDArray[np.int64]
| npt.NDArray[np.int32]
| npt.NDArray[np.intp]
| pd.Series[int]
| _IntIndexType
)
_EdgesFloat: TypeAlias = (
Sequence[float] | npt.NDArray[np.float64] | pd.Series[float] | _FloatIndexType
)
_EdgesTimestamp: TypeAlias = (
Sequence[DatetimeLike]
| npt.NDArray[np.datetime64]
| TimestampSeries
| pd.DatetimeIndex
)
_EdgesTimedelta: TypeAlias = (
Sequence[pd.Timedelta]
| npt.NDArray[np.timedelta64]
| TimedeltaSeries
| pd.TimedeltaIndex
)
_TimestampLike: TypeAlias = pd.Timestamp | np.datetime64 | dt.datetime
_TimedeltaLike: TypeAlias = pd.Timedelta | np.timedelta64 | dt.timedelta
class IntervalIndex(ExtensionIndex, IntervalMixin, Generic[IntervalT]):
closed: IntervalClosedType
def __new__(
cls,
data: Sequence[IntervalT],
closed: IntervalClosedType = ...,
dtype: IntervalDtype | None = ...,
copy: bool = ...,
name: Hashable = ...,
verify_integrity: bool = ...,
) -> IntervalIndex[IntervalT]: ...
@overload
@classmethod
def from_breaks(
cls,
breaks: _EdgesInt,
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[Interval[int]]: ...
@overload
@classmethod
def from_breaks(
cls,
breaks: _EdgesFloat,
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[Interval[float]]: ...
@overload
@classmethod
def from_breaks(
cls,
breaks: _EdgesTimestamp,
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[Interval[pd.Timestamp]]: ...
@overload
@classmethod
def from_breaks(
cls,
breaks: _EdgesTimedelta,
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[Interval[pd.Timedelta]]: ...
@overload
@classmethod
def from_arrays(
cls,
left: _EdgesInt,
right: _EdgesInt,
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[Interval[int]]: ...
@overload
@classmethod
def from_arrays(
cls,
left: _EdgesFloat,
right: _EdgesFloat,
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[Interval[float]]: ...
@overload
@classmethod
def from_arrays(
cls,
left: _EdgesTimestamp,
right: _EdgesTimestamp,
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[Interval[pd.Timestamp]]: ...
@overload
@classmethod
def from_arrays(
cls,
left: _EdgesTimedelta,
right: _EdgesTimedelta,
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[Interval[pd.Timedelta]]: ...
@overload
@classmethod
def from_tuples( # pyright: ignore[reportOverlappingOverload]
cls,
data: Sequence[tuple[int, int]],
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[pd.Interval[int]]: ...
# Ignore misc here due to intentional overlap between int and float
@overload
@classmethod
def from_tuples(
cls,
data: Sequence[tuple[float, float]],
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[pd.Interval[float]]: ...
@overload
@classmethod
def from_tuples(
cls,
data: Sequence[
tuple[pd.Timestamp, pd.Timestamp]
| tuple[dt.datetime, dt.datetime]
| tuple[np.datetime64, np.datetime64]
],
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[pd.Interval[pd.Timestamp]]: ...
@overload
@classmethod
def from_tuples(
cls,
data: Sequence[
tuple[pd.Timedelta, pd.Timedelta]
| tuple[dt.timedelta, dt.timedelta]
| tuple[np.timedelta64, np.timedelta64]
],
closed: IntervalClosedType = ...,
name: Hashable = ...,
copy: bool = ...,
dtype: IntervalDtype | None = ...,
) -> IntervalIndex[pd.Interval[pd.Timedelta]]: ...
def to_tuples(self, na_tuple: bool = ...) -> pd.Index: ...
@overload
def __contains__(self, key: IntervalT) -> bool: ... # type: ignore[misc] # pyright: ignore[reportOverlappingOverload]
@overload
def __contains__(self, key: object) -> Literal[False]: ...
def astype(self, dtype: DtypeArg, copy: bool = ...) -> IntervalIndex: ...
@property
def inferred_type(self) -> str: ...
def memory_usage(self, deep: bool = ...) -> int: ...
@property
def is_overlapping(self) -> bool: ...
# Note: tolerance no effect. It is included in all get_loc so
# that signatures are consistent with base even though it is usually not used
def get_loc(
self,
key: Label,
method: FillnaOptions | Literal["nearest"] | None = ...,
tolerance=...,
) -> int | slice | npt.NDArray[np.bool_]: ...
def get_indexer(
self,
target: Index,
method: FillnaOptions | Literal["nearest"] | None = ...,
limit: int | None = ...,
tolerance=...,
) -> npt.NDArray[np.intp]: ...
def get_indexer_non_unique(
self, target: Index
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
@property
def left(self) -> Index: ...
@property
def right(self) -> Index: ...
@property
def mid(self) -> Index: ...
@property
def length(self) -> Index: ...
def get_value(self, series: ABCSeries, key): ...
@overload # type: ignore[override]
def __getitem__(
self,
idx: slice
| np_ndarray_anyint
| Sequence[int]
| Index
| Series[bool]
| np_ndarray_bool,
) -> IntervalIndex[IntervalT]: ...
@overload
def __getitem__(self, idx: int) -> IntervalT: ...
@property
def is_all_dates(self) -> bool: ...
@overload # type: ignore[override]
def __gt__(
self, other: IntervalT | IntervalIndex[IntervalT]
) -> np_ndarray_bool: ...
@overload
def __gt__(self, other: pd.Series[IntervalT]) -> pd.Series[bool]: ...
@overload # type: ignore[override]
def __ge__(
self, other: IntervalT | IntervalIndex[IntervalT]
) -> np_ndarray_bool: ...
@overload
def __ge__(self, other: pd.Series[IntervalT]) -> pd.Series[bool]: ...
@overload # type: ignore[override]
def __le__(
self, other: IntervalT | IntervalIndex[IntervalT]
) -> np_ndarray_bool: ...
@overload
def __le__(self, other: pd.Series[IntervalT]) -> pd.Series[bool]: ...
@overload # type: ignore[override]
def __lt__(
self, other: IntervalT | IntervalIndex[IntervalT]
) -> np_ndarray_bool: ...
@overload
def __lt__(self, other: pd.Series[IntervalT]) -> pd.Series[bool]: ...
@overload # type: ignore[override]
def __eq__(self, other: IntervalT | IntervalIndex[IntervalT]) -> np_ndarray_bool: ... # type: ignore[misc] # pyright: ignore[reportOverlappingOverload]
@overload
def __eq__(self, other: pd.Series[IntervalT]) -> pd.Series[bool]: ... # type: ignore[misc]
@overload
def __eq__(self, other: object) -> Literal[False]: ...
@overload # type: ignore[override]
def __ne__(self, other: IntervalT | IntervalIndex[IntervalT]) -> np_ndarray_bool: ... # type: ignore[misc] # pyright: ignore[reportOverlappingOverload]
@overload
def __ne__(self, other: pd.Series[IntervalT]) -> pd.Series[bool]: ... # type: ignore[misc]
@overload
def __ne__(self, other: object) -> Literal[True]: ...
# misc here because int and float overlap but interval has distinct types
# int gets hit first and so the correct type is returned
@overload
def interval_range( # type: ignore[misc] # pyright: ignore[reportOverlappingOverload]
start: int = ...,
end: int = ...,
periods: int | None = ...,
freq: int | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[int]]: ...
# Overlaps since int is a subclass of float
@overload
def interval_range( # pyright: ignore[reportOverlappingOverload]
start: int,
*,
end: None = ...,
periods: int | None = ...,
freq: int | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[int]]: ...
@overload
def interval_range( # pyright: ignore[reportOverlappingOverload]
*,
start: None = ...,
end: int,
periods: int | None = ...,
freq: int | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[int]]: ...
@overload
def interval_range(
start: float = ...,
end: float = ...,
periods: int | None = ...,
freq: int | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[float]]: ...
@overload
def interval_range(
start: float,
*,
end: None = ...,
periods: int | None = ...,
freq: int | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[float]]: ...
@overload
def interval_range(
*,
start: None = ...,
end: float,
periods: int | None = ...,
freq: int | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[float]]: ...
@overload
def interval_range(
start: _TimestampLike,
end: _TimestampLike = ...,
periods: int | None = ...,
freq: str | BaseOffset | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[pd.Timestamp]]: ...
@overload
def interval_range(
*,
start: None = ...,
end: _TimestampLike,
periods: int | None = ...,
freq: str | BaseOffset | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[pd.Timestamp]]: ...
@overload
def interval_range(
start: _TimestampLike,
*,
end: None = ...,
periods: int | None = ...,
freq: str | BaseOffset | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[pd.Timestamp]]: ...
@overload
def interval_range(
start: _TimedeltaLike,
end: _TimedeltaLike = ...,
periods: int | None = ...,
freq: str | BaseOffset | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[pd.Timedelta]]: ...
@overload
def interval_range(
*,
start: None = ...,
end: _TimedeltaLike,
periods: int | None = ...,
freq: str | BaseOffset | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[pd.Timedelta]]: ...
@overload
def interval_range(
start: _TimedeltaLike,
*,
end: None = ...,
periods: int | None = ...,
freq: str | BaseOffset | None = ...,
name: Hashable = ...,
closed: IntervalClosedType = ...,
) -> IntervalIndex[Interval[pd.Timedelta]]: ...