|
| 1 | +# Implementation of a Fibonacci Heap based on the concepts described in "Introduction to Algorithms" by Cormen, Leiserson, Rivest, and Stein. |
| 2 | +# Reference: https://en.wikipedia.org/wiki/Fibonacci_heap |
| 3 | + |
| 4 | +from __future__ import annotations |
| 5 | +from collections.abc import Iterable, Iterator |
| 6 | +from typing import Any, Generic, TypeVar |
| 7 | + |
| 8 | +T = TypeVar("T", bound=int) |
| 9 | + |
| 10 | + |
| 11 | +class FibonacciNode(Generic[T]): |
| 12 | + def __init__(self, key: T) -> None: |
| 13 | + """ |
| 14 | + Create a new FibonacciNode with the given key. |
| 15 | +
|
| 16 | + Args: |
| 17 | + key (T): The key value associated with the node. |
| 18 | + """ |
| 19 | + self.key: T = key |
| 20 | + self.degree: int = 0 |
| 21 | + self.parent: FibonacciNode[T] | None = None |
| 22 | + self.child: FibonacciNode[T] | None = None |
| 23 | + self.is_marked: bool = False |
| 24 | + self.next: FibonacciNode[T] = self |
| 25 | + self.prev: FibonacciNode[T] = self |
| 26 | + |
| 27 | + |
| 28 | +class FibonacciHeap(Generic[T]): |
| 29 | + def __init__(self) -> None: |
| 30 | + """ |
| 31 | + Create a new Fibonacci Heap. |
| 32 | +
|
| 33 | + The Fibonacci Heap is initialized as an empty heap. |
| 34 | + """ |
| 35 | + self.min_node: FibonacciNode[T] | None = None |
| 36 | + self.num_nodes: int = 0 |
| 37 | + |
| 38 | + def insert(self, key: T) -> None: |
| 39 | + """ |
| 40 | + Insert a new node with the given key into the Fibonacci Heap. |
| 41 | +
|
| 42 | + Args: |
| 43 | + key (T): The key value to insert. |
| 44 | + """ |
| 45 | + new_node = FibonacciNode(key) |
| 46 | + if self.min_node is None: |
| 47 | + self.min_node = new_node |
| 48 | + else: |
| 49 | + self._link_nodes(self.min_node, new_node) |
| 50 | + if key < self.min_node.key: |
| 51 | + self.min_node = new_node |
| 52 | + self.num_nodes += 1 |
| 53 | + |
| 54 | + def _link_nodes(self, min_node: FibonacciNode[T], new_node: FibonacciNode[T]) -> None: |
| 55 | + """ |
| 56 | + Link two nodes together in the Fibonacci Heap. |
| 57 | +
|
| 58 | + Args: |
| 59 | + min_node (FibonacciNode): The minimum node. |
| 60 | + new_node (FibonacciNode): The new node to be linked. |
| 61 | + """ |
| 62 | + new_node.next = min_node.next |
| 63 | + min_node.next = new_node |
| 64 | + new_node.prev = min_node |
| 65 | + new_node.next.prev = new_node |
| 66 | + |
| 67 | + def _consolidate(self) -> None: |
| 68 | + """ |
| 69 | + Consolidate the heap by combining trees with the same degree. |
| 70 | +
|
| 71 | + This is an internal method used to maintain the Fibonacci Heap's properties. |
| 72 | + """ |
| 73 | + max_degree = int(self.num_nodes ** 0.5) + 1 |
| 74 | + degree_buckets: list[FibonacciNode[T] | None] = [None] * max_degree |
| 75 | + |
| 76 | + current_node = self.min_node |
| 77 | + nodes_to_visit = [current_node] |
| 78 | + while True: |
| 79 | + current_node = current_node.next |
| 80 | + if current_node == self.min_node: |
| 81 | + break |
| 82 | + nodes_to_visit.append(current_node) |
| 83 | + |
| 84 | + for node in nodes_to_visit: |
| 85 | + degree = node.degree |
| 86 | + while degree_buckets[degree]: |
| 87 | + other = degree_buckets[degree] |
| 88 | + if node.key > other.key: |
| 89 | + node, other = other, node |
| 90 | + self._link_nodes(node, other) |
| 91 | + degree_buckets[degree] = None |
| 92 | + degree += 1 |
| 93 | + degree_buckets[degree] = node |
| 94 | + |
| 95 | + self.min_node = None |
| 96 | + for node in degree_buckets: |
| 97 | + if node: |
| 98 | + if self.min_node is None or node.key < self.min_node.key: |
| 99 | + self.min_node = node |
| 100 | + |
| 101 | + def extract_min(self) -> T | None: |
| 102 | + """ |
| 103 | + Extract the minimum element from the Fibonacci Heap. |
| 104 | +
|
| 105 | + Returns: |
| 106 | + T | None: The minimum element, or None if the heap is empty. |
| 107 | + """ |
| 108 | + min_node = self.min_node |
| 109 | + if min_node: |
| 110 | + if min_node.child: |
| 111 | + child = min_node.child |
| 112 | + while True: |
| 113 | + next_child = child.next |
| 114 | + child.prev = min_node.prev |
| 115 | + child.next = min_node.next |
| 116 | + min_node.prev.next = child |
| 117 | + min_node.next.prev = child |
| 118 | + min_node.child = None |
| 119 | + if next_child == min_node.child: |
| 120 | + break |
| 121 | + child = next_child |
| 122 | + self._remove_node(min_node) |
| 123 | + if min_node == min_node.next: |
| 124 | + self.min_node = None |
| 125 | + else: |
| 126 | + self.min_node = min_node.next |
| 127 | + self._consolidate() |
| 128 | + self.num_nodes -= 1 |
| 129 | + return min_node.key if min_node else None |
| 130 | + |
| 131 | + def _remove_node(self, node: FibonacciNode[T]) -> None: |
| 132 | + """ |
| 133 | + Remove a node from the doubly linked list of nodes. |
| 134 | +
|
| 135 | + Args: |
| 136 | + node (FibonacciNode): The node to remove. |
| 137 | + """ |
| 138 | + node.prev.next = node.next |
| 139 | + node.next.prev = node.prev |
| 140 | + |
| 141 | +if __name__ == "__main__": |
| 142 | + import doctest |
| 143 | + doctest.testmod() |
| 144 | + |
0 commit comments