@@ -2225,14 +2225,14 @@ def drop_duplicates(
2225
2225
--------
2226
2226
Generate a Series with duplicated entries.
2227
2227
2228
- >>> s = pd.Series(['lama ', 'cow', 'lama ', 'beetle', 'lama ', 'hippo'],
2228
+ >>> s = pd.Series(['llama ', 'cow', 'llama ', 'beetle', 'llama ', 'hippo'],
2229
2229
... name='animal')
2230
2230
>>> s
2231
- 0 lama
2231
+ 0 llama
2232
2232
1 cow
2233
- 2 lama
2233
+ 2 llama
2234
2234
3 beetle
2235
- 4 lama
2235
+ 4 llama
2236
2236
5 hippo
2237
2237
Name: animal, dtype: object
2238
2238
@@ -2241,7 +2241,7 @@ def drop_duplicates(
2241
2241
set of duplicated entries. The default value of keep is 'first'.
2242
2242
2243
2243
>>> s.drop_duplicates()
2244
- 0 lama
2244
+ 0 llama
2245
2245
1 cow
2246
2246
3 beetle
2247
2247
5 hippo
@@ -2253,7 +2253,7 @@ def drop_duplicates(
2253
2253
>>> s.drop_duplicates(keep='last')
2254
2254
1 cow
2255
2255
3 beetle
2256
- 4 lama
2256
+ 4 llama
2257
2257
5 hippo
2258
2258
Name: animal, dtype: object
2259
2259
@@ -2314,7 +2314,7 @@ def duplicated(self, keep: DropKeep = "first") -> Series:
2314
2314
By default, for each set of duplicated values, the first occurrence is
2315
2315
set on False and all others on True:
2316
2316
2317
- >>> animals = pd.Series(['lama ', 'cow', 'lama ', 'beetle', 'lama '])
2317
+ >>> animals = pd.Series(['llama ', 'cow', 'llama ', 'beetle', 'llama '])
2318
2318
>>> animals.duplicated()
2319
2319
0 False
2320
2320
1 False
@@ -4862,14 +4862,14 @@ def drop(
4862
4862
4863
4863
Drop 2nd level label in MultiIndex Series
4864
4864
4865
- >>> midx = pd.MultiIndex(levels=[['lama ', 'cow', 'falcon'],
4865
+ >>> midx = pd.MultiIndex(levels=[['llama ', 'cow', 'falcon'],
4866
4866
... ['speed', 'weight', 'length']],
4867
4867
... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
4868
4868
... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
4869
4869
>>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3],
4870
4870
... index=midx)
4871
4871
>>> s
4872
- lama speed 45.0
4872
+ llama speed 45.0
4873
4873
weight 200.0
4874
4874
length 1.2
4875
4875
cow speed 30.0
@@ -4881,7 +4881,7 @@ def drop(
4881
4881
dtype: float64
4882
4882
4883
4883
>>> s.drop(labels='weight', level=1)
4884
- lama speed 45.0
4884
+ llama speed 45.0
4885
4885
length 1.2
4886
4886
cow speed 30.0
4887
4887
length 1.5
@@ -5048,9 +5048,9 @@ def isin(self, values) -> Series:
5048
5048
5049
5049
Examples
5050
5050
--------
5051
- >>> s = pd.Series(['lama ', 'cow', 'lama ', 'beetle', 'lama ',
5051
+ >>> s = pd.Series(['llama ', 'cow', 'llama ', 'beetle', 'llama ',
5052
5052
... 'hippo'], name='animal')
5053
- >>> s.isin(['cow', 'lama '])
5053
+ >>> s.isin(['cow', 'llama '])
5054
5054
0 True
5055
5055
1 True
5056
5056
2 True
@@ -5061,7 +5061,7 @@ def isin(self, values) -> Series:
5061
5061
5062
5062
To invert the boolean values, use the ``~`` operator:
5063
5063
5064
- >>> ~s.isin(['cow', 'lama '])
5064
+ >>> ~s.isin(['cow', 'llama '])
5065
5065
0 False
5066
5066
1 False
5067
5067
2 False
@@ -5070,10 +5070,10 @@ def isin(self, values) -> Series:
5070
5070
5 True
5071
5071
Name: animal, dtype: bool
5072
5072
5073
- Passing a single string as ``s.isin('lama ')`` will raise an error. Use
5073
+ Passing a single string as ``s.isin('llama ')`` will raise an error. Use
5074
5074
a list of one element instead:
5075
5075
5076
- >>> s.isin(['lama '])
5076
+ >>> s.isin(['llama '])
5077
5077
0 True
5078
5078
1 False
5079
5079
2 True
0 commit comments