@@ -58,7 +58,7 @@ target values with cutoff times that can be used for supervised learning.
58
58
59
59
STUMPY is a powerful and scalable Python library for modern time series analysis.
60
60
At its core, STUMPY efficiently computes something called a
61
- ` matrix profile < https://stumpy.readthedocs.io/en/latest/Tutorial_The_Matrix_Profile.html> ` __ ,
61
+ [ matrix profile] ( https://stumpy.readthedocs.io/en/latest/Tutorial_The_Matrix_Profile.html ) ,
62
62
which can be used for a wide variety of time series data mining tasks.
63
63
64
64
## Visualization
@@ -177,7 +177,7 @@ D-Tale integrates seamlessly with Jupyter notebooks, Python terminals, Kaggle
177
177
178
178
### [ hvplot] ( https://hvplot.holoviz.org/index.html )
179
179
180
- hvPlot is a high-level plotting API for the PyData ecosystem built on ` HoloViews < https://holoviews.org/> ` __ .
180
+ hvPlot is a high-level plotting API for the PyData ecosystem built on [ HoloViews] ( https://holoviews.org/ ) .
181
181
It can be loaded as a native pandas plotting backend via
182
182
183
183
``` python
@@ -207,8 +207,7 @@ are utilized by Jupyter Notebook for displaying (abbreviated) HTML or
207
207
LaTeX tables. LaTeX output is properly escaped. (Note: HTML tables may
208
208
or may not be compatible with non-HTML Jupyter output formats.)
209
209
210
- See ` Options and Settings <options> ` and
211
- ` Available Options <options.available> `
210
+ See [ Options and Settings] ( https://pandas.pydata.org/docs/user_guide/options.html )
212
211
for pandas ` display. ` settings.
213
212
214
213
### [ quantopian/qgrid] ( https://github.com/quantopian/qgrid )
@@ -355,7 +354,7 @@ Rigorously tested, it is a complete replacement for ``df.to_sql``.
355
354
### [ Deltalake] ( https://pypi.org/project/deltalake )
356
355
357
356
Deltalake python package lets you access tables stored in
358
- ` Delta Lake < https://delta.io/> ` __ natively in Python without the need to use Spark or
357
+ [ Delta Lake] ( https://delta.io/ ) natively in Python without the need to use Spark or
359
358
JVM. It provides the `` delta_table.to_pyarrow_table().to_pandas() `` method to convert
360
359
any Delta table into Pandas dataframe.
361
360
@@ -510,8 +509,8 @@ assumptions about your datasets and check that they're *actually* true.
510
509
## Extension data types
511
510
512
511
Pandas provides an interface for defining
513
- ` extension types < extending.extension-types> ` to extend NumPy's type system. The following libraries
514
- implement that interface to provide types not found in NumPy or pandas,
512
+ [ extension types] ( https://pandas.pydata.org/docs/development/ extending.html# extension-types) to extend NumPy's type system.
513
+ The following librariesimplement that interface to provide types not found in NumPy or pandas,
515
514
which work well with pandas' data containers.
516
515
517
516
### [ cyberpandas] ( https://cyberpandas.readthedocs.io/en/latest )
@@ -540,7 +539,8 @@ Text Extensions for Pandas provides extension types to cover common data structu
540
539
## Accessors
541
540
542
541
A directory of projects providing
543
- ` extension accessors <extending.register-accessors> ` . This is for users to discover new accessors and for library
542
+ [ extension accessors] ( https://pandas.pydata.org/docs/development/extending.html#registering-custom-accessors ) .
543
+ This is for users to discover new accessors and for library
544
544
authors to coordinate on the namespace.
545
545
546
546
| Library | Accessor | Classes |
0 commit comments