forked from pymc-devs/pymc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_distributions.py
1337 lines (1099 loc) · 54.6 KB
/
test_distributions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import itertools
import sys
from .helpers import SeededTest, select_by_precision
from ..vartypes import continuous_types
from ..model import Model, Point, Deterministic
from ..blocking import DictToVarBijection
from ..distributions import (
DensityDist, Categorical, Multinomial, VonMises, Dirichlet,
MvStudentT, MvNormal, MatrixNormal, ZeroInflatedPoisson,
ZeroInflatedNegativeBinomial, Constant, Poisson, Bernoulli, Beta,
BetaBinomial, HalfStudentT, StudentT, Weibull, Pareto,
InverseGamma, Gamma, Cauchy, HalfCauchy, Lognormal, Laplace,
NegativeBinomial, Geometric, Exponential, ExGaussian, Normal, TruncatedNormal,
Flat, LKJCorr, Wald, ChiSquared, HalfNormal, DiscreteUniform,
Bound, Uniform, Triangular, Binomial, SkewNormal, DiscreteWeibull,
Gumbel, Logistic, OrderedLogistic, LogitNormal, Interpolated,
ZeroInflatedBinomial, HalfFlat, AR1, KroneckerNormal, Rice,
Kumaraswamy
)
from ..distributions import continuous
from pymc3.theanof import floatX
from numpy import array, inf, log, exp
from numpy.testing import assert_almost_equal, assert_allclose, assert_equal
import numpy.random as nr
import numpy as np
import pytest
from scipy import integrate
import scipy.stats.distributions as sp
import scipy.stats
from scipy.special import logit
import theano
import theano.tensor as tt
from ..math import kronecker
def get_lkj_cases():
"""
Log probabilities calculated using the formulas in:
http://www.sciencedirect.com/science/article/pii/S0047259X09000876
"""
tri = np.array([0.7, 0.0, -0.7])
return [
(tri, 1, 3, 1.5963125911388549),
(tri, 3, 3, -7.7963493376312742),
(tri, 0, 3, -np.inf),
(np.array([1.1, 0.0, -0.7]), 1, 3, -np.inf),
(np.array([0.7, 0.0, -1.1]), 1, 3, -np.inf)
]
LKJ_CASES = get_lkj_cases()
class Domain:
def __init__(self, vals, dtype=None, edges=None, shape=None):
avals = array(vals, dtype=dtype)
if dtype is None and not str(avals.dtype).startswith('int'):
avals = avals.astype(theano.config.floatX)
vals = [array(v, dtype=avals.dtype) for v in vals]
if edges is None:
edges = array(vals[0]), array(vals[-1])
vals = vals[1:-1]
if shape is None:
shape = avals[0].shape
self.vals = vals
self.shape = shape
self.lower, self.upper = edges
self.dtype = avals.dtype
def __add__(self, other):
return Domain(
[v + other for v in self.vals],
self.dtype,
(self.lower + other, self.upper + other),
self.shape)
def __mul__(self, other):
try:
return Domain(
[v * other for v in self.vals],
self.dtype,
(self.lower * other, self.upper * other),
self.shape)
except TypeError:
return Domain(
[v * other for v in self.vals],
self.dtype,
(self.lower, self.upper),
self.shape)
def __neg__(self):
return Domain(
[-v for v in self.vals],
self.dtype,
(-self.lower, -self.upper),
self.shape)
def product(domains, n_samples=-1):
"""Get an iterator over a product of domains.
Args:
domains: a dictionary of (name, object) pairs, where the objects
must be "domain-like", as in, have a `.vals` property
n_samples: int, maximum samples to return. -1 to return whole product
Returns:
list of the cartesian product of the domains
"""
try:
names, domains = zip(*domains.items())
except ValueError: # domains.items() is empty
return []
all_vals = [zip(names, val) for val in itertools.product(*[d.vals for d in domains])]
if n_samples > 0 and len(all_vals) > n_samples:
return (all_vals[j] for j in nr.choice(len(all_vals), n_samples, replace=False))
return all_vals
R = Domain([-inf, -2.1, -1, -.01, .0, .01, 1, 2.1, inf])
Rplus = Domain([0, .01, .1, .9, .99, 1, 1.5, 2, 100, inf])
Rplusbig = Domain([0, .5, .9, .99, 1, 1.5, 2, 20, inf])
Rminusbig = Domain([-inf, -2, -1.5, -1, -.99, -.9, -.5, -0.01, 0])
Unit = Domain([0, .001, .1, .5, .75, .99, 1])
Circ = Domain([-np.pi, -2.1, -1, -.01, .0, .01, 1, 2.1, np.pi])
Runif = Domain([-1, -.4, 0, .4, 1])
Rdunif = Domain([-10, 0, 10.])
Rplusunif = Domain([0, .5, inf])
Rplusdunif = Domain([2, 10, 100], 'int64')
I = Domain([-1000, -3, -2, -1, 0, 1, 2, 3, 1000], 'int64')
NatSmall = Domain([0, 3, 4, 5, 1000], 'int64')
Nat = Domain([0, 1, 2, 3, 2000], 'int64')
NatBig = Domain([0, 1, 2, 3, 5000, 50000], 'int64')
PosNat = Domain([1, 2, 3, 2000], 'int64')
Bool = Domain([0, 0, 1, 1], 'int64')
def build_model(distfam, valuedomain, vardomains, extra_args=None):
if extra_args is None:
extra_args = {}
with Model() as m:
vals = {}
for v, dom in vardomains.items():
vals[v] = Flat(v, dtype=dom.dtype, shape=dom.shape,
testval=dom.vals[0])
vals.update(extra_args)
distfam('value', shape=valuedomain.shape, transform=None, **vals)
return m
def integrate_nd(f, domain, shape, dtype):
if shape == () or shape == (1,):
if dtype in continuous_types:
return integrate.quad(f, domain.lower, domain.upper, epsabs=1e-8)[0]
else:
return sum(f(j) for j in range(domain.lower, domain.upper + 1))
elif shape == (2,):
def f2(a, b):
return f([a, b])
return integrate.dblquad(f2, domain.lower[0], domain.upper[0],
lambda _: domain.lower[1],
lambda _: domain.upper[1])[0]
elif shape == (3,):
def f3(a, b, c):
return f([a, b, c])
return integrate.tplquad(f3, domain.lower[0], domain.upper[0],
lambda _: domain.lower[1],
lambda _: domain.upper[1],
lambda _, __: domain.lower[2],
lambda _, __: domain.upper[2])[0]
else:
raise ValueError("Dont know how to integrate shape: " + str(shape))
def multinomial_logpdf(value, n, p):
if value.sum() == n and (0 <= value).all() and (value <= n).all():
logpdf = scipy.special.gammaln(n + 1)
logpdf -= scipy.special.gammaln(value + 1).sum()
logpdf += logpow(p, value).sum()
return logpdf
else:
return -inf
def beta_mu_sigma(value, mu, sigma):
kappa = mu * (1 - mu) / sigma**2 - 1
if kappa > 0:
return sp.beta.logpdf(value, mu * kappa, (1 - mu) * kappa)
else:
return -inf
class ProductDomain:
def __init__(self, domains):
self.vals = list(itertools.product(*[d.vals for d in domains]))
self.shape = (len(domains),) + domains[0].shape
self.lower = [d.lower for d in domains]
self.upper = [d.upper for d in domains]
self.dtype = domains[0].dtype
def Vector(D, n):
return ProductDomain([D] * n)
def SortedVector(n):
vals = []
np.random.seed(42)
for _ in range(10):
vals.append(np.sort(np.random.randn(n)))
return Domain(vals, edges=(None, None))
def UnitSortedVector(n):
vals = []
np.random.seed(42)
for _ in range(10):
vals.append(np.sort(np.random.rand(n)))
return Domain(vals, edges=(None, None))
def RealMatrix(n, m):
vals = []
np.random.seed(42)
for _ in range(10):
vals.append(np.random.randn(n, m))
return Domain(vals, edges=(None, None))
def simplex_values(n):
if n == 1:
yield array([1.0])
else:
for v in Unit.vals:
for vals in simplex_values(n - 1):
yield np.concatenate([[v], (1 - v) * vals])
def normal_logpdf_tau(value, mu, tau):
return normal_logpdf_cov(value, mu, np.linalg.inv(tau)).sum()
def normal_logpdf_cov(value, mu, cov):
return scipy.stats.multivariate_normal.logpdf(value, mu, cov).sum()
def normal_logpdf_chol(value, mu, chol):
return normal_logpdf_cov(value, mu, np.dot(chol, chol.T)).sum()
def normal_logpdf_chol_upper(value, mu, chol):
return normal_logpdf_cov(value, mu, np.dot(chol.T, chol)).sum()
def matrix_normal_logpdf_cov(value, mu, rowcov, colcov):
return scipy.stats.matrix_normal.logpdf(value, mu, rowcov, colcov)
def matrix_normal_logpdf_chol(value, mu, rowchol, colchol):
return matrix_normal_logpdf_cov(value, mu, np.dot(rowchol, rowchol.T),
np.dot(colchol, colchol.T))
def kron_normal_logpdf_cov(value, mu, covs, sigma):
cov = kronecker(*covs).eval()
if sigma is not None:
cov += sigma**2 * np.eye(*cov.shape)
return scipy.stats.multivariate_normal.logpdf(value, mu, cov).sum()
def kron_normal_logpdf_chol(value, mu, chols, sigma):
covs = [np.dot(chol, chol.T) for chol in chols]
return kron_normal_logpdf_cov(value, mu, covs, sigma=sigma)
def kron_normal_logpdf_evd(value, mu, evds, sigma):
covs = []
for eigs, Q in evds:
try:
eigs = eigs.eval()
except AttributeError:
pass
try:
Q = Q.eval()
except AttributeError:
pass
covs.append(np.dot(Q, np.dot(np.diag(eigs), Q.T)))
return kron_normal_logpdf_cov(value, mu, covs, sigma)
def betafn(a):
return floatX(scipy.special.gammaln(a).sum(-1) - scipy.special.gammaln(a.sum(-1)))
def logpow(v, p):
return np.choose(v == 0, [p * np.log(v), 0])
def discrete_weibull_logpmf(value, q, beta):
return floatX(np.log(np.power(floatX(q),
np.power(floatX(value), floatX(beta)))
- np.power(floatX(q), np.power(floatX(value + 1),
floatX(beta)))))
def dirichlet_logpdf(value, a):
return floatX((-betafn(a) + logpow(value, a - 1).sum(-1)).sum())
def categorical_logpdf(value, p):
if value >= 0 and value <= len(p):
return floatX(np.log(np.moveaxis(p, -1, 0)[value]))
else:
return -inf
def mvt_logpdf(value, nu, Sigma, mu=0):
d = len(Sigma)
dist = np.atleast_2d(value) - mu
chol = np.linalg.cholesky(Sigma)
trafo = np.linalg.solve(chol, dist.T).T
logdet = np.log(np.diag(chol)).sum()
lgamma = scipy.special.gammaln
norm = lgamma((nu + d) / 2.) - 0.5 * d * np.log(nu * np.pi) - lgamma(nu / 2.)
logp = norm - logdet - (nu + d) / 2. * np.log1p((trafo * trafo).sum(-1) / nu)
return logp.sum()
def AR1_logpdf(value, k, tau_e):
return (sp.norm(loc=0, scale=1/np.sqrt(tau_e)).logpdf(value[0]) +
sp.norm(loc=k*value[:-1], scale=1/np.sqrt(tau_e)).logpdf(value[1:]).sum())
def invlogit(x, eps=sys.float_info.epsilon):
return (1. - 2. * eps) / (1. + np.exp(-x)) + eps
def orderedlogistic_logpdf(value, eta, cutpoints):
c = np.concatenate(([-np.inf], cutpoints, [np.inf]))
ps = np.array([invlogit(eta - cc) - invlogit(eta - cc1)
for cc, cc1 in zip(c[:-1], c[1:])])
p = ps[value]
return np.where(np.all(ps >= 0), np.log(p), -np.inf)
class Simplex:
def __init__(self, n):
self.vals = list(simplex_values(n))
self.shape = (n,)
self.dtype = Unit.dtype
class MultiSimplex:
def __init__(self, n_dependent, n_independent):
self.vals = []
for simplex_value in itertools.product(simplex_values(n_dependent), repeat=n_independent):
self.vals.append(np.vstack(simplex_value))
self.shape = (n_independent, n_dependent)
self.dtype = Unit.dtype
def PdMatrix(n):
if n == 1:
return PdMatrix1
elif n == 2:
return PdMatrix2
elif n == 3:
return PdMatrix3
else:
raise ValueError("n out of bounds")
PdMatrix1 = Domain([np.eye(1), [[.5]]], edges=(None, None))
PdMatrix2 = Domain([np.eye(2), [[.5, .05], [.05, 4.5]]], edges=(None, None))
PdMatrix3 = Domain(
[np.eye(3), [[.5, .1, 0], [.1, 1, 0], [0, 0, 2.5]]], edges=(None, None))
PdMatrixChol1 = Domain([np.eye(1), [[0.001]]], edges=(None, None))
PdMatrixChol2 = Domain([np.eye(2), [[0.1, 0], [10, 1]]], edges=(None, None))
PdMatrixChol3 = Domain([np.eye(3), [[0.1, 0, 0], [10, 100, 0], [0, 1, 10]]],
edges=(None, None))
def PdMatrixChol(n):
if n == 1:
return PdMatrixChol1
elif n == 2:
return PdMatrixChol2
elif n == 3:
return PdMatrixChol3
else:
raise ValueError("n out of bounds")
PdMatrixCholUpper1 = Domain([np.eye(1), [[0.001]]], edges=(None, None))
PdMatrixCholUpper2 = Domain([np.eye(2), [[0.1, 10], [0, 1]]], edges=(None, None))
PdMatrixCholUpper3 = Domain([np.eye(3), [[0.1, 10, 0], [0, 100, 1], [0, 0, 10]]],
edges=(None, None))
def PdMatrixCholUpper(n):
if n == 1:
return PdMatrixCholUpper1
elif n == 2:
return PdMatrixCholUpper2
elif n == 3:
return PdMatrixCholUpper3
else:
raise ValueError("n out of bounds")
def RandomPdMatrix(n):
A = np.random.rand(n, n)
return np.dot(A, A.T) + n * np.identity(n)
class TestMatchesScipy(SeededTest):
def pymc3_matches_scipy(self, pymc3_dist, domain, paramdomains, scipy_dist,
decimal=None, extra_args=None, scipy_args=None):
if extra_args is None:
extra_args = {}
if scipy_args is None:
scipy_args = {}
model = build_model(pymc3_dist, domain, paramdomains, extra_args)
value = model.named_vars['value']
def logp(args):
args.update(scipy_args)
return scipy_dist(**args)
self.check_logp(model, value, domain, paramdomains, logp, decimal=decimal)
def check_logp(self, model, value, domain, paramdomains, logp_reference, decimal=None):
domains = paramdomains.copy()
domains['value'] = domain
logp = model.fastlogp
for pt in product(domains, n_samples=100):
pt = Point(pt, model=model)
if decimal is None:
decimal = select_by_precision(float64=6, float32=3)
assert_almost_equal(logp(pt), logp_reference(pt), decimal=decimal, err_msg=str(pt))
def check_logcdf(self, pymc3_dist, domain, paramdomains, scipy_logcdf, decimal=None):
domains = paramdomains.copy()
domains['value'] = domain
if decimal is None:
decimal = select_by_precision(float64=6, float32=3)
for pt in product(domains, n_samples=100):
params = dict(pt)
scipy_cdf = scipy_logcdf(**params)
value = params.pop('value')
dist = pymc3_dist.dist(**params)
assert_almost_equal(dist.logcdf(value).tag.test_value, scipy_cdf,
decimal=decimal, err_msg=str(pt))
def check_int_to_1(self, model, value, domain, paramdomains):
pdf = model.fastfn(exp(model.logpt))
for pt in product(paramdomains, n_samples=10):
pt = Point(pt, value=value.tag.test_value, model=model)
bij = DictToVarBijection(value, (), pt)
pdfx = bij.mapf(pdf)
area = integrate_nd(pdfx, domain, value.dshape, value.dtype)
assert_almost_equal(area, 1, err_msg=str(pt))
def checkd(self, distfam, valuedomain, vardomains, checks=None, extra_args=None):
if checks is None:
checks = (self.check_int_to_1, )
if extra_args is None:
extra_args = {}
m = build_model(distfam, valuedomain, vardomains, extra_args=extra_args)
for check in checks:
check(m, m.named_vars['value'], valuedomain, vardomains)
def test_uniform(self):
self.pymc3_matches_scipy(
Uniform, Runif, {'lower': -Rplusunif, 'upper': Rplusunif},
lambda value, lower, upper: sp.uniform.logpdf(value, lower, upper - lower))
self.check_logcdf(Uniform, Runif, {'lower': -Rplusunif, 'upper': Rplusunif},
lambda value, lower, upper: sp.uniform.logcdf(value, lower, upper - lower))
def test_triangular(self):
self.pymc3_matches_scipy(
Triangular, Runif, {'lower': -Rplusunif, 'c': Runif, 'upper': Rplusunif},
lambda value, c, lower, upper: sp.triang.logpdf(value, c-lower, lower, upper-lower))
self.check_logcdf(Triangular, Runif, {'lower': -Rplusunif, 'c': Runif, 'upper': Rplusunif},
lambda value, c, lower, upper: sp.triang.logcdf(value, c-lower, lower, upper-lower))
def test_bound_normal(self):
PositiveNormal = Bound(Normal, lower=0.)
self.pymc3_matches_scipy(PositiveNormal, Rplus, {'mu': Rplus, 'sigma': Rplus},
lambda value, mu, sigma: sp.norm.logpdf(value, mu, sigma),
decimal=select_by_precision(float64=6, float32=-1))
with Model(): x = PositiveNormal('x', mu=0, sigma=1, transform=None)
assert np.isinf(x.logp({'x':-1}))
def test_discrete_unif(self):
self.pymc3_matches_scipy(
DiscreteUniform, Rdunif, {'lower': -Rplusdunif, 'upper': Rplusdunif},
lambda value, lower, upper: sp.randint.logpmf(value, lower, upper + 1))
def test_flat(self):
self.pymc3_matches_scipy(Flat, Runif, {}, lambda value: 0)
with Model():
x = Flat('a')
assert_allclose(x.tag.test_value, 0)
self.check_logcdf(Flat, Runif, {}, lambda value: np.log(0.5))
# Check infinite cases individually.
assert 0. == Flat.dist().logcdf(np.inf).tag.test_value
assert -np.inf == Flat.dist().logcdf(-np.inf).tag.test_value
def test_half_flat(self):
self.pymc3_matches_scipy(HalfFlat, Rplus, {}, lambda value: 0)
with Model():
x = HalfFlat('a', shape=2)
assert_allclose(x.tag.test_value, 1)
assert x.tag.test_value.shape == (2,)
self.check_logcdf(HalfFlat, Runif, {}, lambda value: -np.inf)
# Check infinite cases individually.
assert 0. == HalfFlat.dist().logcdf(np.inf).tag.test_value
assert -np.inf == HalfFlat.dist().logcdf(-np.inf).tag.test_value
def test_normal(self):
self.pymc3_matches_scipy(Normal, R, {'mu': R, 'sigma': Rplus},
lambda value, mu, sigma: sp.norm.logpdf(value, mu, sigma),
decimal=select_by_precision(float64=6, float32=1)
)
self.check_logcdf(Normal, R, {'mu': R, 'sigma': Rplus},
lambda value, mu, sigma: sp.norm.logcdf(value, mu, sigma))
def test_truncated_normal(self):
def scipy_logp(value, mu, sigma, lower, upper):
return sp.truncnorm.logpdf(
value, (lower-mu)/sigma, (upper-mu)/sigma, loc=mu, scale=sigma)
self.pymc3_matches_scipy(
TruncatedNormal, R,
{'mu': R, 'sigma': Rplusbig, 'lower': -Rplusbig, 'upper': Rplusbig},
scipy_logp,
decimal=select_by_precision(float64=6, float32=1)
)
def test_half_normal(self):
self.pymc3_matches_scipy(HalfNormal, Rplus, {'sigma': Rplus},
lambda value, sigma: sp.halfnorm.logpdf(value, scale=sigma),
decimal=select_by_precision(float64=6, float32=-1)
)
self.check_logcdf(HalfNormal, Rplus, {'sigma': Rplus},
lambda value, sigma: sp.halfnorm.logcdf(value, scale=sigma))
def test_chi_squared(self):
self.pymc3_matches_scipy(ChiSquared, Rplus, {'nu': Rplusdunif},
lambda value, nu: sp.chi2.logpdf(value, df=nu))
@pytest.mark.xfail(reason="Poor CDF in SciPy. See scipy/scipy#869 for details.")
def test_wald_scipy(self):
self.pymc3_matches_scipy(Wald, Rplus, {'mu': Rplus, 'alpha': Rplus},
lambda value, mu, alpha: sp.invgauss.logpdf(value, mu=mu, loc=alpha),
decimal=select_by_precision(float64=6, float32=1)
)
self.check_logcdf(Wald, Rplus, {'mu': Rplus, 'alpha': Rplus},
lambda value, mu, alpha: sp.invgauss.logcdf(value, mu=mu, loc=alpha))
@pytest.mark.parametrize('value,mu,lam,phi,alpha,logp', [
(.5, .001, .5, None, 0., -124500.7257914),
(1., .5, .001, None, 0., -4.3733162),
(2., 1., None, None, 0., -2.2086593),
(5., 2., 2.5, None, 0., -3.4374500),
(7.5, 5., None, 1., 0., -3.2199074),
(15., 10., None, .75, 0., -4.0360623),
(50., 15., None, .66666, 0., -6.1801249),
(.5, .001, 0.5, None, 0., -124500.7257914),
(1., .5, .001, None, .5, -3.3330954),
(2., 1., None, None, 1., -0.9189385),
(5., 2., 2.5, None, 2., -2.2128783),
(7.5, 5., None, 1., 2.5, -2.5283764),
(15., 10., None, .75, 5., -3.3653647),
(50., 15., None, .666666, 10., -5.6481874)
])
def test_wald(self, value, mu, lam, phi, alpha, logp):
# Log probabilities calculated using the dIG function from the R package gamlss.
# See e.g., doi: 10.1111/j.1467-9876.2005.00510.x, or
# http://www.gamlss.org/.
with Model() as model:
Wald('wald', mu=mu, lam=lam, phi=phi, alpha=alpha, transform=None)
pt = {'wald': value}
decimals = select_by_precision(float64=6, float32=1)
assert_almost_equal(model.fastlogp(pt), logp, decimal=decimals, err_msg=str(pt))
def test_beta(self):
self.pymc3_matches_scipy(Beta, Unit, {'alpha': Rplus, 'beta': Rplus},
lambda value, alpha, beta: sp.beta.logpdf(value, alpha, beta))
self.pymc3_matches_scipy(Beta, Unit, {'mu': Unit, 'sigma': Rplus}, beta_mu_sigma)
self.check_logcdf(Beta, Unit, {'alpha': Rplus, 'beta': Rplus},
lambda value, alpha, beta: sp.beta.logcdf(value, alpha, beta))
def test_kumaraswamy(self):
# Scipy does not have a built-in Kumaraswamy pdf
def scipy_log_pdf(value, a, b):
return np.log(a) + np.log(b) + (a - 1) * np.log(value) + (b - 1) * np.log(1 - value ** a)
self.pymc3_matches_scipy(Kumaraswamy, Unit, {'a': Rplus, 'b': Rplus}, scipy_log_pdf)
def test_exponential(self):
self.pymc3_matches_scipy(Exponential, Rplus, {'lam': Rplus},
lambda value, lam: sp.expon.logpdf(value, 0, 1 / lam))
self.check_logcdf(Exponential, Rplus, {'lam': Rplus},
lambda value, lam: sp.expon.logcdf(value, 0, 1 / lam))
def test_geometric(self):
self.pymc3_matches_scipy(Geometric, Nat, {'p': Unit},
lambda value, p: np.log(sp.geom.pmf(value, p)))
def test_negative_binomial(self):
def test_fun(value, mu, alpha):
return sp.nbinom.logpmf(value, alpha, 1 - mu / (mu + alpha))
self.pymc3_matches_scipy(NegativeBinomial, Nat, {
'mu': Rplus, 'alpha': Rplus}, test_fun)
def test_laplace(self):
self.pymc3_matches_scipy(Laplace, R, {'mu': R, 'b': Rplus},
lambda value, mu, b: sp.laplace.logpdf(value, mu, b))
self.check_logcdf(Laplace, R, {'mu': R, 'b': Rplus},
lambda value, mu, b: sp.laplace.logcdf(value, mu, b))
def test_lognormal(self):
self.pymc3_matches_scipy(
Lognormal, Rplus, {'mu': R, 'tau': Rplusbig},
lambda value, mu, tau: floatX(sp.lognorm.logpdf(value, tau**-.5, 0, np.exp(mu))))
self.check_logcdf(Lognormal, Rplus, {'mu': R, 'tau': Rplusbig},
lambda value, mu, tau: sp.lognorm.logcdf(value, tau**-.5, 0, np.exp(mu)))
def test_t(self):
self.pymc3_matches_scipy(StudentT, R, {'nu': Rplus, 'mu': R, 'lam': Rplus},
lambda value, nu, mu, lam: sp.t.logpdf(value, nu, mu, lam**-0.5))
self.check_logcdf(StudentT, R, {'nu': Rplus, 'mu': R, 'lam': Rplus},
lambda value, nu, mu, lam: sp.t.logcdf(value, nu, mu, lam**-0.5))
def test_cauchy(self):
self.pymc3_matches_scipy(Cauchy, R, {'alpha': R, 'beta': Rplusbig},
lambda value, alpha, beta: sp.cauchy.logpdf(value, alpha, beta))
self.check_logcdf(Cauchy, R, {'alpha': R, 'beta': Rplusbig},
lambda value, alpha, beta: sp.cauchy.logcdf(value, alpha, beta))
def test_half_cauchy(self):
self.pymc3_matches_scipy(HalfCauchy, Rplus, {'beta': Rplusbig},
lambda value, beta: sp.halfcauchy.logpdf(value, scale=beta))
self.check_logcdf(HalfCauchy, Rplus, {'beta': Rplusbig},
lambda value, beta: sp.halfcauchy.logcdf(value, scale=beta))
def test_gamma(self):
self.pymc3_matches_scipy(
Gamma, Rplus, {'alpha': Rplusbig, 'beta': Rplusbig},
lambda value, alpha, beta: sp.gamma.logpdf(value, alpha, scale=1.0 / beta))
def test_fun(value, mu, sigma):
return sp.gamma.logpdf(value, mu**2 / sigma**2, scale=1.0 / (mu / sigma**2))
self.pymc3_matches_scipy(
Gamma, Rplus, {'mu': Rplusbig, 'sigma': Rplusbig}, test_fun)
self.check_logcdf(
Gamma, Rplus, {'alpha': Rplusbig, 'beta': Rplusbig},
lambda value, alpha, beta: sp.gamma.logcdf(value, alpha, scale=1.0/beta))
def test_inverse_gamma(self):
self.pymc3_matches_scipy(
InverseGamma, Rplus, {'alpha': Rplus, 'beta': Rplus},
lambda value, alpha, beta: sp.invgamma.logpdf(value, alpha, scale=beta))
@pytest.mark.xfail(condition=(theano.config.floatX == "float32"),
reason="Fails on float32 due to scaling issues")
def test_inverse_gamma_alt_params(self):
def test_fun(value, mu, sigma):
alpha, beta = InverseGamma._get_alpha_beta(None, None, mu, sigma)
return sp.invgamma.logpdf(value, alpha, scale=beta)
self.pymc3_matches_scipy(
InverseGamma, Rplus, {'mu': Rplus, 'sigma': Rplus}, test_fun)
def test_pareto(self):
self.pymc3_matches_scipy(Pareto, Rplus, {'alpha': Rplusbig, 'm': Rplusbig},
lambda value, alpha, m: sp.pareto.logpdf(value, alpha, scale=m))
self.check_logcdf(Pareto, Rplus, {'alpha': Rplusbig, 'm': Rplusbig},
lambda value, alpha, m: sp.pareto.logcdf(value, alpha, scale=m))
@pytest.mark.xfail(condition=(theano.config.floatX == "float32"), reason="Fails on float32 due to inf issues")
def test_weibull(self):
self.pymc3_matches_scipy(Weibull, Rplus, {'alpha': Rplusbig, 'beta': Rplusbig},
lambda value, alpha, beta: sp.exponweib.logpdf(value, 1, alpha, scale=beta),
)
self.check_logcdf(Weibull, Rplus, {'alpha': Rplusbig, 'beta': Rplusbig},
lambda value, alpha, beta:
sp.exponweib.logcdf(value, 1, alpha, scale=beta),)
def test_half_studentt(self):
# this is only testing for nu=1 (halfcauchy)
self.pymc3_matches_scipy(HalfStudentT, Rplus, {'sigma': Rplus},
lambda value, sigma: sp.halfcauchy.logpdf(value, 0, sigma))
def test_skew_normal(self):
self.pymc3_matches_scipy(SkewNormal, R, {'mu': R, 'sigma': Rplusbig, 'alpha': R},
lambda value, alpha, mu, sigma: sp.skewnorm.logpdf(value, alpha, mu, sigma))
def test_binomial(self):
self.pymc3_matches_scipy(Binomial, Nat, {'n': NatSmall, 'p': Unit},
lambda value, n, p: sp.binom.logpmf(value, n, p))
# Too lazy to propagate decimal parameter through the whole chain of deps
@pytest.mark.xfail(condition=(theano.config.floatX == "float32"), reason="Fails on float32")
def test_beta_binomial(self):
self.checkd(BetaBinomial, Nat, {'alpha': Rplus, 'beta': Rplus, 'n': NatSmall})
def test_bernoulli(self):
self.pymc3_matches_scipy(
Bernoulli, Bool, {'logit_p': R},
lambda value, logit_p: sp.bernoulli.logpmf(value, scipy.special.expit(logit_p)))
self.pymc3_matches_scipy(Bernoulli, Bool, {'p': Unit},
lambda value, p: sp.bernoulli.logpmf(value, p))
def test_discrete_weibull(self):
self.pymc3_matches_scipy(DiscreteWeibull, Nat,
{'q': Unit, 'beta': Rplusdunif}, discrete_weibull_logpmf)
def test_poisson(self):
self.pymc3_matches_scipy(Poisson, Nat, {'mu': Rplus},
lambda value, mu: sp.poisson.logpmf(value, mu))
def test_bound_poisson(self):
NonZeroPoisson = Bound(Poisson, lower=1.)
self.pymc3_matches_scipy(NonZeroPoisson, PosNat, {'mu': Rplus},
lambda value, mu: sp.poisson.logpmf(value, mu))
with Model(): x = NonZeroPoisson('x', mu=4)
assert np.isinf(x.logp({'x':0}))
def test_constantdist(self):
self.pymc3_matches_scipy(Constant, I, {'c': I},
lambda value, c: np.log(c == value))
# Too lazy to propagate decimal parameter through the whole chain of deps
@pytest.mark.xfail(condition=(theano.config.floatX == "float32"), reason="Fails on float32")
def test_zeroinflatedpoisson(self):
self.checkd(ZeroInflatedPoisson, Nat, {'theta': Rplus, 'psi': Unit})
# Too lazy to propagate decimal parameter through the whole chain of deps
@pytest.mark.xfail(condition=(theano.config.floatX == "float32"), reason="Fails on float32")
def test_zeroinflatednegativebinomial(self):
self.checkd(ZeroInflatedNegativeBinomial, Nat,
{'mu': Rplusbig, 'alpha': Rplusbig, 'psi': Unit})
# Too lazy to propagate decimal parameter through the whole chain of deps
@pytest.mark.xfail(condition=(theano.config.floatX == "float32"), reason="Fails on float32")
def test_zeroinflatedbinomial(self):
self.checkd(ZeroInflatedBinomial, Nat,
{'n': NatSmall, 'p': Unit, 'psi': Unit})
@pytest.mark.parametrize('n', [1, 2, 3])
def test_mvnormal(self, n):
self.pymc3_matches_scipy(MvNormal, RealMatrix(5, n),
{'mu': Vector(R, n), 'tau': PdMatrix(n)},
normal_logpdf_tau)
self.pymc3_matches_scipy(MvNormal, Vector(R, n),
{'mu': Vector(R, n), 'tau': PdMatrix(n)},
normal_logpdf_tau)
self.pymc3_matches_scipy(MvNormal, RealMatrix(5, n),
{'mu': Vector(R, n), 'cov': PdMatrix(n)},
normal_logpdf_cov)
self.pymc3_matches_scipy(MvNormal, Vector(R, n),
{'mu': Vector(R, n), 'cov': PdMatrix(n)},
normal_logpdf_cov)
self.pymc3_matches_scipy(MvNormal, RealMatrix(5, n),
{'mu': Vector(R, n), 'chol': PdMatrixChol(n)},
normal_logpdf_chol,
decimal=select_by_precision(float64=6, float32=-1))
self.pymc3_matches_scipy(MvNormal, Vector(R, n),
{'mu': Vector(R, n), 'chol': PdMatrixChol(n)},
normal_logpdf_chol,
decimal=select_by_precision(float64=6, float32=0))
def MvNormalUpper(*args, **kwargs):
return MvNormal(lower=False, *args, **kwargs)
self.pymc3_matches_scipy(MvNormalUpper, Vector(R, n),
{'mu': Vector(R, n), 'chol': PdMatrixCholUpper(n)},
normal_logpdf_chol_upper,
decimal=select_by_precision(float64=6, float32=0))
@pytest.mark.xfail(condition=(theano.config.floatX == "float32"), reason="Fails on float32 due to inf issues")
def test_mvnormal_indef(self):
cov_val = np.array([[1, 0.5], [0.5, -2]])
cov = tt.matrix('cov')
cov.tag.test_value = np.eye(2)
mu = floatX(np.zeros(2))
x = tt.vector('x')
x.tag.test_value = np.zeros(2)
logp = MvNormal.dist(mu=mu, cov=cov).logp(x)
f_logp = theano.function([cov, x], logp)
assert f_logp(cov_val, np.ones(2)) == -np.inf
dlogp = tt.grad(logp, cov)
f_dlogp = theano.function([cov, x], dlogp)
assert not np.all(np.isfinite(f_dlogp(cov_val, np.ones(2))))
logp = MvNormal.dist(mu=mu, tau=cov).logp(x)
f_logp = theano.function([cov, x], logp)
assert f_logp(cov_val, np.ones(2)) == -np.inf
dlogp = tt.grad(logp, cov)
f_dlogp = theano.function([cov, x], dlogp)
assert not np.all(np.isfinite(f_dlogp(cov_val, np.ones(2))))
def test_mvnormal_init_fail(self):
with Model():
with pytest.raises(ValueError):
x = MvNormal('x', mu=np.zeros(3), shape=3)
with pytest.raises(ValueError):
x = MvNormal('x', mu=np.zeros(3), cov=np.eye(3), tau=np.eye(3), shape=3)
@pytest.mark.parametrize('n', [1, 2, 3])
def test_matrixnormal(self, n):
mat_scale = 1e3 # To reduce logp magnitude
mean_scale = .1
self.pymc3_matches_scipy(MatrixNormal, RealMatrix(n, n),
{'mu': RealMatrix(n, n)*mean_scale,
'rowcov': PdMatrix(n)*mat_scale,
'colcov': PdMatrix(n)*mat_scale},
matrix_normal_logpdf_cov)
self.pymc3_matches_scipy(MatrixNormal, RealMatrix(2, n),
{'mu': RealMatrix(2, n)*mean_scale,
'rowcov': PdMatrix(2)*mat_scale,
'colcov': PdMatrix(n)*mat_scale},
matrix_normal_logpdf_cov)
self.pymc3_matches_scipy(MatrixNormal, RealMatrix(3, n),
{'mu': RealMatrix(3, n)*mean_scale,
'rowchol': PdMatrixChol(3)*mat_scale,
'colchol': PdMatrixChol(n)*mat_scale},
matrix_normal_logpdf_chol,
decimal=select_by_precision(float64=6, float32=-1))
self.pymc3_matches_scipy(MatrixNormal, RealMatrix(n, 3),
{'mu': RealMatrix(n, 3)*mean_scale,
'rowchol': PdMatrixChol(n)*mat_scale,
'colchol': PdMatrixChol(3)*mat_scale},
matrix_normal_logpdf_chol,
decimal=select_by_precision(float64=6, float32=0))
@pytest.mark.parametrize('n', [2, 3])
@pytest.mark.parametrize('m', [3])
@pytest.mark.parametrize('sigma', [None, 1.0])
def test_kroneckernormal(self, n, m, sigma):
np.random.seed(5)
N = n*m
covs = [RandomPdMatrix(n), RandomPdMatrix(m)]
chols = list(map(np.linalg.cholesky, covs))
evds = list(map(np.linalg.eigh, covs))
dom = Domain([np.random.randn(N)*0.1], edges=(None, None), shape=N)
mu = Domain([np.random.randn(N)*0.1], edges=(None, None), shape=N)
std_args = {'mu': mu}
cov_args = {'covs': covs}
chol_args = {'chols': chols}
evd_args = {'evds': evds}
if sigma is not None and sigma != 0:
std_args['sigma'] = Domain([sigma], edges=(None, None))
else:
for args in [cov_args, chol_args, evd_args]:
args['sigma'] = sigma
self.pymc3_matches_scipy(
KroneckerNormal, dom, std_args, kron_normal_logpdf_cov,
extra_args=cov_args, scipy_args=cov_args)
self.pymc3_matches_scipy(
KroneckerNormal, dom, std_args, kron_normal_logpdf_chol,
extra_args=chol_args, scipy_args=chol_args)
self.pymc3_matches_scipy(
KroneckerNormal, dom, std_args, kron_normal_logpdf_evd,
extra_args=evd_args, scipy_args=evd_args)
dom = Domain([np.random.randn(2, N)*0.1], edges=(None, None), shape=(2, N))
self.pymc3_matches_scipy(
KroneckerNormal, dom, std_args, kron_normal_logpdf_cov,
extra_args=cov_args, scipy_args=cov_args)
self.pymc3_matches_scipy(
KroneckerNormal, dom, std_args, kron_normal_logpdf_chol,
extra_args=chol_args, scipy_args=chol_args)
self.pymc3_matches_scipy(
KroneckerNormal, dom, std_args, kron_normal_logpdf_evd,
extra_args=evd_args, scipy_args=evd_args)
@pytest.mark.parametrize('n', [1, 2])
def test_mvt(self, n):
self.pymc3_matches_scipy(MvStudentT, Vector(R, n),
{'nu': Rplus, 'Sigma': PdMatrix(n), 'mu': Vector(R, n)},
mvt_logpdf)
self.pymc3_matches_scipy(MvStudentT, RealMatrix(2, n),
{'nu': Rplus, 'Sigma': PdMatrix(n), 'mu': Vector(R, n)},
mvt_logpdf)
@pytest.mark.parametrize('n', [2, 3, 4])
def test_AR1(self, n):
self.pymc3_matches_scipy(AR1, Vector(R, n), {'k': Unit, 'tau_e': Rplus}, AR1_logpdf)
@pytest.mark.parametrize('n', [2, 3])
def test_wishart(self, n):
# This check compares the autodiff gradient to the numdiff gradient.
# However, due to the strict constraints of the wishart,
# it is impossible to numerically determine the gradient as a small
# pertubation breaks the symmetry. Thus disabling. Also, numdifftools was
# removed in June 2019, so an alternative would be needed.
#
# self.checkd(Wishart, PdMatrix(n), {'n': Domain([2, 3, 4, 2000]), 'V': PdMatrix(n)},
# checks=[self.check_dlogp])
pass
@pytest.mark.parametrize('x,eta,n,lp', LKJ_CASES)
def test_lkj(self, x, eta, n, lp):
with Model() as model:
LKJCorr('lkj', eta=eta, n=n, transform=None)
pt = {'lkj': x}
decimals = select_by_precision(float64=6, float32=4)
assert_almost_equal(model.fastlogp(pt), lp, decimal=decimals, err_msg=str(pt))
@pytest.mark.parametrize('n', [2, 3])
def test_dirichlet(self, n):
self.pymc3_matches_scipy(Dirichlet, Simplex(
n), {'a': Vector(Rplus, n)}, dirichlet_logpdf)
def test_dirichlet_2D(self):
self.pymc3_matches_scipy(Dirichlet, MultiSimplex(2, 2),
{'a': Vector(Vector(Rplus, 2), 2)}, dirichlet_logpdf)
@pytest.mark.parametrize('n', [2, 3])
def test_multinomial(self, n):
self.pymc3_matches_scipy(Multinomial, Vector(Nat, n), {'p': Simplex(n), 'n': Nat},
multinomial_logpdf)
@pytest.mark.parametrize('p,n', [
[[.25, .25, .25, .25], 1],
[[.3, .6, .05, .05], 2],
[[.3, .6, .05, .05], 10],
])
def test_multinomial_mode(self, p, n):
_p = np.array(p)
with Model() as model:
m = Multinomial('m', n, _p, _p.shape)
assert_allclose(m.distribution.mode.eval().sum(), n)
_p = np.array([p, p])
with Model() as model:
m = Multinomial('m', n, _p, _p.shape)
assert_allclose(m.distribution.mode.eval().sum(axis=-1), n)
@pytest.mark.parametrize('p, shape, n', [
[[.25, .25, .25, .25], 4, 2],
[[.25, .25, .25, .25], (1, 4), 3],
# 3: expect to fail
# [[.25, .25, .25, .25], (10, 4)],
[[.25, .25, .25, .25], (10, 1, 4), 5],
# 5: expect to fail
# [[[.25, .25, .25, .25]], (2, 4), [7, 11]],
[[[.25, .25, .25, .25],
[.25, .25, .25, .25]], (2, 4), 13],
[[[.25, .25, .25, .25],
[.25, .25, .25, .25]], (1, 2, 4), [23, 29]],
[[[.25, .25, .25, .25],
[.25, .25, .25, .25]], (10, 2, 4), [31, 37]],
[[[.25, .25, .25, .25],
[.25, .25, .25, .25]], (2, 4), [17, 19]],
])
def test_multinomial_random(self, p, shape, n):
p = np.asarray(p)
with Model() as model:
m = Multinomial('m', n=n, p=p, shape=shape)
m.random()
def test_multinomial_mode_with_shape(self):
n = [1, 10]
p = np.asarray([[.25, .25, .25, .25], [.26, .26, .26, .22]])
with Model() as model:
m = Multinomial('m', n=n, p=p, shape=(2, 4))
assert_allclose(m.distribution.mode.eval().sum(axis=-1), n)
def test_multinomial_vec(self):
vals = np.array([[2, 4, 4], [3, 3, 4]])
p = np.array([0.2, 0.3, 0.5])
n = 10
with Model() as model_single:
Multinomial('m', n=n, p=p, shape=len(p))
with Model() as model_many:
Multinomial('m', n=n, p=p, shape=vals.shape)