forked from pymc-devs/pymc-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdisaster_model_theano_op.py
169 lines (154 loc) · 2.91 KB
/
disaster_model_theano_op.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
Similar to disaster_model.py, but for arbitrary
deterministics which are not not working with Theano.
Note that gradient based samplers will not work.
"""
import arviz as az
import theano.tensor as tt
from numpy import arange, array, empty
from theano.compile.ops import as_op
import pymc3 as pm
__all__ = ["disasters_data", "switchpoint", "early_mean", "late_mean", "rate", "disasters"]
# Time series of recorded coal mining disasters in the UK from 1851 to 1962
disasters_data = array(
[
4,
5,
4,
0,
1,
4,
3,
4,
0,
6,
3,
3,
4,
0,
2,
6,
3,
3,
5,
4,
5,
3,
1,
4,
4,
1,
5,
5,
3,
4,
2,
5,
2,
2,
3,
4,
2,
1,
3,
2,
2,
1,
1,
1,
1,
3,
0,
0,
1,
0,
1,
1,
0,
0,
3,
1,
0,
3,
2,
2,
0,
1,
1,
1,
0,
1,
0,
1,
0,
0,
0,
2,
1,
0,
0,
0,
1,
1,
0,
2,
3,
3,
1,
1,
2,
1,
1,
1,
1,
2,
4,
2,
0,
0,
1,
4,
0,
0,
0,
1,
0,
0,
0,
0,
0,
1,
0,
0,
1,
0,
1,
]
)
years = len(disasters_data)
@as_op(itypes=[tt.lscalar, tt.dscalar, tt.dscalar], otypes=[tt.dvector])
def rate_(switchpoint, early_mean, late_mean):
out = empty(years)
out[:switchpoint] = early_mean
out[switchpoint:] = late_mean
return out
with pm.Model() as model:
# Prior for distribution of switchpoint location
switchpoint = pm.DiscreteUniform("switchpoint", lower=0, upper=years)
# Priors for pre- and post-switch mean number of disasters
early_mean = pm.Exponential("early_mean", lam=1.0)
late_mean = pm.Exponential("late_mean", lam=1.0)
# Allocate appropriate Poisson rates to years before and after current
# switchpoint location
idx = arange(years)
rate = rate_(switchpoint, early_mean, late_mean)
# Data likelihood
disasters = pm.Poisson("disasters", rate, observed=disasters_data)
# Use slice sampler for means
step1 = pm.Slice([early_mean, late_mean])
# Use Metropolis for switchpoint, since it accomodates discrete variables
step2 = pm.Metropolis([switchpoint])
# Initial values for stochastic nodes
start = {"early_mean": 2.0, "late_mean": 3.0}
tr = pm.sample(1000, tune=500, start=start, step=[step1, step2], cores=2)
az.plot_trace(tr)