forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_concat.py
874 lines (729 loc) · 30.1 KB
/
test_concat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
from collections import (
abc,
deque,
)
from collections.abc import Iterator
from datetime import datetime
from decimal import Decimal
import numpy as np
import pytest
from pandas.errors import InvalidIndexError
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
PeriodIndex,
Series,
concat,
date_range,
)
import pandas._testing as tm
from pandas.core.arrays import SparseArray
from pandas.tests.extension.decimal import to_decimal
class TestConcatenate:
def test_append_concat(self):
# GH#1815
d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC")
d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC")
s1 = Series(np.random.default_rng(2).standard_normal(10), d1)
s2 = Series(np.random.default_rng(2).standard_normal(10), d2)
s1 = s1.to_period()
s2 = s2.to_period()
# drops index
result = concat([s1, s2])
assert isinstance(result.index, PeriodIndex)
assert result.index[0] == s1.index[0]
def test_concat_copy(self, using_array_manager, using_copy_on_write):
df = DataFrame(np.random.default_rng(2).standard_normal((4, 3)))
df2 = DataFrame(np.random.default_rng(2).integers(0, 10, size=4).reshape(4, 1))
df3 = DataFrame({5: "foo"}, index=range(4))
# These are actual copies.
result = concat([df, df2, df3], axis=1, copy=True)
if not using_copy_on_write:
for arr in result._mgr.arrays:
assert not any(
np.shares_memory(arr, y)
for x in [df, df2, df3]
for y in x._mgr.arrays
)
else:
for arr in result._mgr.arrays:
assert arr.base is not None
# These are the same.
result = concat([df, df2, df3], axis=1, copy=False)
for arr in result._mgr.arrays:
if arr.dtype.kind == "f":
assert arr.base is df._mgr.arrays[0].base
elif arr.dtype.kind in ["i", "u"]:
assert arr.base is df2._mgr.arrays[0].base
elif arr.dtype == object:
if using_array_manager:
# we get the same array object, which has no base
assert arr is df3._mgr.arrays[0]
else:
assert arr.base is not None
# Float block was consolidated.
df4 = DataFrame(np.random.default_rng(2).standard_normal((4, 1)))
result = concat([df, df2, df3, df4], axis=1, copy=False)
for arr in result._mgr.arrays:
if arr.dtype.kind == "f":
if using_array_manager or using_copy_on_write:
# this is a view on some array in either df or df4
assert any(
np.shares_memory(arr, other)
for other in df._mgr.arrays + df4._mgr.arrays
)
else:
# the block was consolidated, so we got a copy anyway
assert arr.base is None
elif arr.dtype.kind in ["i", "u"]:
assert arr.base is df2._mgr.arrays[0].base
elif arr.dtype == object:
# this is a view on df3
assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays)
def test_concat_with_group_keys(self):
# axis=0
df = DataFrame(np.random.default_rng(2).standard_normal((3, 4)))
df2 = DataFrame(np.random.default_rng(2).standard_normal((4, 4)))
result = concat([df, df2], keys=[0, 1])
exp_index = MultiIndex.from_arrays(
[[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]]
)
expected = DataFrame(np.r_[df.values, df2.values], index=exp_index)
tm.assert_frame_equal(result, expected)
result = concat([df, df], keys=[0, 1])
exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]])
expected = DataFrame(np.r_[df.values, df.values], index=exp_index2)
tm.assert_frame_equal(result, expected)
# axis=1
df = DataFrame(np.random.default_rng(2).standard_normal((4, 3)))
df2 = DataFrame(np.random.default_rng(2).standard_normal((4, 4)))
result = concat([df, df2], keys=[0, 1], axis=1)
expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index)
tm.assert_frame_equal(result, expected)
result = concat([df, df], keys=[0, 1], axis=1)
expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2)
tm.assert_frame_equal(result, expected)
def test_concat_keys_specific_levels(self):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]]
level = ["three", "two", "one", "zero"]
result = concat(
pieces,
axis=1,
keys=["one", "two", "three"],
levels=[level],
names=["group_key"],
)
tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key"))
tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3]))
assert result.columns.names == ["group_key", None]
@pytest.mark.parametrize("mapping", ["mapping", "dict"])
def test_concat_mapping(self, mapping, non_dict_mapping_subclass):
constructor = dict if mapping == "dict" else non_dict_mapping_subclass
frames = constructor(
{
"foo": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
"bar": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
"baz": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
"qux": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
}
)
sorted_keys = list(frames.keys())
result = concat(frames)
expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys)
tm.assert_frame_equal(result, expected)
result = concat(frames, axis=1)
expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1)
tm.assert_frame_equal(result, expected)
keys = ["baz", "foo", "bar"]
result = concat(frames, keys=keys)
expected = concat([frames[k] for k in keys], keys=keys)
tm.assert_frame_equal(result, expected)
def test_concat_keys_and_levels(self):
df = DataFrame(np.random.default_rng(2).standard_normal((1, 3)))
df2 = DataFrame(np.random.default_rng(2).standard_normal((1, 4)))
levels = [["foo", "baz"], ["one", "two"]]
names = ["first", "second"]
result = concat(
[df, df2, df, df2],
keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")],
levels=levels,
names=names,
)
expected = concat([df, df2, df, df2])
exp_index = MultiIndex(
levels=levels + [[0]],
codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]],
names=names + [None],
)
expected.index = exp_index
tm.assert_frame_equal(result, expected)
# no names
result = concat(
[df, df2, df, df2],
keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")],
levels=levels,
)
assert result.index.names == (None,) * 3
# no levels
result = concat(
[df, df2, df, df2],
keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")],
names=["first", "second"],
)
assert result.index.names == ("first", "second", None)
tm.assert_index_equal(
result.index.levels[0], Index(["baz", "foo"], name="first")
)
def test_concat_keys_levels_no_overlap(self):
# GH #1406
df = DataFrame(np.random.default_rng(2).standard_normal((1, 3)), index=["a"])
df2 = DataFrame(np.random.default_rng(2).standard_normal((1, 4)), index=["b"])
msg = "Values not found in passed level"
with pytest.raises(ValueError, match=msg):
concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]])
msg = "Key one not in level"
with pytest.raises(ValueError, match=msg):
concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]])
def test_crossed_dtypes_weird_corner(self):
columns = ["A", "B", "C", "D"]
df1 = DataFrame(
{
"A": np.array([1, 2, 3, 4], dtype="f8"),
"B": np.array([1, 2, 3, 4], dtype="i8"),
"C": np.array([1, 2, 3, 4], dtype="f8"),
"D": np.array([1, 2, 3, 4], dtype="i8"),
},
columns=columns,
)
df2 = DataFrame(
{
"A": np.array([1, 2, 3, 4], dtype="i8"),
"B": np.array([1, 2, 3, 4], dtype="f8"),
"C": np.array([1, 2, 3, 4], dtype="i8"),
"D": np.array([1, 2, 3, 4], dtype="f8"),
},
columns=columns,
)
appended = concat([df1, df2], ignore_index=True)
expected = DataFrame(
np.concatenate([df1.values, df2.values], axis=0), columns=columns
)
tm.assert_frame_equal(appended, expected)
df = DataFrame(np.random.default_rng(2).standard_normal((1, 3)), index=["a"])
df2 = DataFrame(np.random.default_rng(2).standard_normal((1, 4)), index=["b"])
result = concat([df, df2], keys=["one", "two"], names=["first", "second"])
assert result.index.names == ("first", "second")
def test_with_mixed_tuples(self, sort):
# 10697
# columns have mixed tuples, so handle properly
df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2))
df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2))
# it works
concat([df1, df2], sort=sort)
def test_concat_mixed_objs(self):
# concat mixed series/frames
# G2385
# axis 1
index = date_range("01-Jan-2013", periods=10, freq="H")
arr = np.arange(10, dtype="int64")
s1 = Series(arr, index=index)
s2 = Series(arr, index=index)
df = DataFrame(arr.reshape(-1, 1), index=index)
expected = DataFrame(
np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0]
)
result = concat([df, df], axis=1)
tm.assert_frame_equal(result, expected)
expected = DataFrame(
np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1]
)
result = concat([s1, s2], axis=1)
tm.assert_frame_equal(result, expected)
expected = DataFrame(
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2]
)
result = concat([s1, s2, s1], axis=1)
tm.assert_frame_equal(result, expected)
expected = DataFrame(
np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3]
)
result = concat([s1, df, s2, s2, s1], axis=1)
tm.assert_frame_equal(result, expected)
# with names
s1.name = "foo"
expected = DataFrame(
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0]
)
result = concat([s1, df, s2], axis=1)
tm.assert_frame_equal(result, expected)
s2.name = "bar"
expected = DataFrame(
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"]
)
result = concat([s1, df, s2], axis=1)
tm.assert_frame_equal(result, expected)
# ignore index
expected = DataFrame(
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2]
)
result = concat([s1, df, s2], axis=1, ignore_index=True)
tm.assert_frame_equal(result, expected)
# axis 0
expected = DataFrame(
np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0]
)
result = concat([s1, df, s2])
tm.assert_frame_equal(result, expected)
expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0])
result = concat([s1, df, s2], ignore_index=True)
tm.assert_frame_equal(result, expected)
def test_dtype_coercion(self):
# 12411
df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]})
result = concat([df.iloc[[0]], df.iloc[[1]]])
tm.assert_series_equal(result.dtypes, df.dtypes)
# 12045
df = DataFrame({"date": [datetime(2012, 1, 1), datetime(1012, 1, 2)]})
result = concat([df.iloc[[0]], df.iloc[[1]]])
tm.assert_series_equal(result.dtypes, df.dtypes)
# 11594
df = DataFrame({"text": ["some words"] + [None] * 9})
result = concat([df.iloc[[0]], df.iloc[[1]]])
tm.assert_series_equal(result.dtypes, df.dtypes)
def test_concat_single_with_key(self):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
result = concat([df], keys=["foo"])
expected = concat([df, df], keys=["foo", "bar"])
tm.assert_frame_equal(result, expected[:10])
def test_concat_no_items_raises(self):
with pytest.raises(ValueError, match="No objects to concatenate"):
concat([])
def test_concat_exclude_none(self):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
pieces = [df[:5], None, None, df[5:]]
result = concat(pieces)
tm.assert_frame_equal(result, df)
with pytest.raises(ValueError, match="All objects passed were None"):
concat([None, None])
def test_concat_keys_with_none(self):
# #1649
df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]])
result = concat({"a": None, "b": df0, "c": df0[:2], "d": df0[:1], "e": df0})
expected = concat({"b": df0, "c": df0[:2], "d": df0[:1], "e": df0})
tm.assert_frame_equal(result, expected)
result = concat(
[None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"]
)
expected = concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"])
tm.assert_frame_equal(result, expected)
def test_concat_bug_1719(self):
ts1 = tm.makeTimeSeries()
ts2 = tm.makeTimeSeries()[::2]
# to join with union
# these two are of different length!
left = concat([ts1, ts2], join="outer", axis=1)
right = concat([ts2, ts1], join="outer", axis=1)
assert len(left) == len(right)
def test_concat_bug_2972(self):
ts0 = Series(np.zeros(5))
ts1 = Series(np.ones(5))
ts0.name = ts1.name = "same name"
result = concat([ts0, ts1], axis=1)
expected = DataFrame({0: ts0, 1: ts1})
expected.columns = ["same name", "same name"]
tm.assert_frame_equal(result, expected)
def test_concat_bug_3602(self):
# GH 3602, duplicate columns
df1 = DataFrame(
{
"firmNo": [0, 0, 0, 0],
"prc": [6, 6, 6, 6],
"stringvar": ["rrr", "rrr", "rrr", "rrr"],
}
)
df2 = DataFrame(
{"C": [9, 10, 11, 12], "misc": [1, 2, 3, 4], "prc": [6, 6, 6, 6]}
)
expected = DataFrame(
[
[0, 6, "rrr", 9, 1, 6],
[0, 6, "rrr", 10, 2, 6],
[0, 6, "rrr", 11, 3, 6],
[0, 6, "rrr", 12, 4, 6],
]
)
expected.columns = ["firmNo", "prc", "stringvar", "C", "misc", "prc"]
result = concat([df1, df2], axis=1)
tm.assert_frame_equal(result, expected)
def test_concat_iterables(self):
# GH8645 check concat works with tuples, list, generators, and weird
# stuff like deque and custom iterables
df1 = DataFrame([1, 2, 3])
df2 = DataFrame([4, 5, 6])
expected = DataFrame([1, 2, 3, 4, 5, 6])
tm.assert_frame_equal(concat((df1, df2), ignore_index=True), expected)
tm.assert_frame_equal(concat([df1, df2], ignore_index=True), expected)
tm.assert_frame_equal(
concat((df for df in (df1, df2)), ignore_index=True), expected
)
tm.assert_frame_equal(concat(deque((df1, df2)), ignore_index=True), expected)
class CustomIterator1:
def __len__(self) -> int:
return 2
def __getitem__(self, index):
try:
return {0: df1, 1: df2}[index]
except KeyError as err:
raise IndexError from err
tm.assert_frame_equal(concat(CustomIterator1(), ignore_index=True), expected)
class CustomIterator2(abc.Iterable):
def __iter__(self) -> Iterator:
yield df1
yield df2
tm.assert_frame_equal(concat(CustomIterator2(), ignore_index=True), expected)
def test_concat_order(self):
# GH 17344, GH#47331
dfs = [DataFrame(index=range(3), columns=["a", 1, None])]
dfs += [DataFrame(index=range(3), columns=[None, 1, "a"]) for _ in range(100)]
result = concat(dfs, sort=True).columns
expected = Index([1, "a", None])
tm.assert_index_equal(result, expected)
def test_concat_different_extension_dtypes_upcasts(self):
a = Series(pd.array([1, 2], dtype="Int64"))
b = Series(to_decimal([1, 2]))
result = concat([a, b], ignore_index=True)
expected = Series([1, 2, Decimal(1), Decimal(2)], dtype=object)
tm.assert_series_equal(result, expected)
def test_concat_ordered_dict(self):
# GH 21510
expected = concat(
[Series(range(3)), Series(range(4))], keys=["First", "Another"]
)
result = concat({"First": Series(range(3)), "Another": Series(range(4))})
tm.assert_series_equal(result, expected)
def test_concat_duplicate_indices_raise(self):
# GH 45888: test raise for concat DataFrames with duplicate indices
# https://github.com/pandas-dev/pandas/issues/36263
df1 = DataFrame(
np.random.default_rng(2).standard_normal(5),
index=[0, 1, 2, 3, 3],
columns=["a"],
)
df2 = DataFrame(
np.random.default_rng(2).standard_normal(5),
index=[0, 1, 2, 2, 4],
columns=["b"],
)
msg = "Reindexing only valid with uniquely valued Index objects"
with pytest.raises(InvalidIndexError, match=msg):
concat([df1, df2], axis=1)
def test_concat_no_unnecessary_upcast(float_numpy_dtype, frame_or_series):
# GH 13247
dims = frame_or_series(dtype=object).ndim
dt = float_numpy_dtype
dfs = [
frame_or_series(np.array([1], dtype=dt, ndmin=dims)),
frame_or_series(np.array([np.nan], dtype=dt, ndmin=dims)),
frame_or_series(np.array([5], dtype=dt, ndmin=dims)),
]
x = concat(dfs)
assert x.values.dtype == dt
@pytest.mark.parametrize("pdt", [Series, DataFrame])
def test_concat_will_upcast(pdt, any_signed_int_numpy_dtype):
dt = any_signed_int_numpy_dtype
dims = pdt().ndim
dfs = [
pdt(np.array([1], dtype=dt, ndmin=dims)),
pdt(np.array([np.nan], ndmin=dims)),
pdt(np.array([5], dtype=dt, ndmin=dims)),
]
x = concat(dfs)
assert x.values.dtype == "float64"
def test_concat_empty_and_non_empty_frame_regression():
# GH 18178 regression test
df1 = DataFrame({"foo": [1]})
df2 = DataFrame({"foo": []})
expected = DataFrame({"foo": [1.0]})
result = concat([df1, df2])
tm.assert_frame_equal(result, expected)
def test_concat_sparse():
# GH 23557
a = Series(SparseArray([0, 1, 2]))
expected = DataFrame(data=[[0, 0], [1, 1], [2, 2]]).astype(
pd.SparseDtype(np.int64, 0)
)
result = concat([a, a], axis=1)
tm.assert_frame_equal(result, expected)
def test_concat_dense_sparse():
# GH 30668
dtype = pd.SparseDtype(np.float64, None)
a = Series(pd.arrays.SparseArray([1, None]), dtype=dtype)
b = Series([1], dtype=float)
expected = Series(data=[1, None, 1], index=[0, 1, 0]).astype(dtype)
result = concat([a, b], axis=0)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("keys", [["e", "f", "f"], ["f", "e", "f"]])
def test_duplicate_keys(keys):
# GH 33654
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
s1 = Series([7, 8, 9], name="c")
s2 = Series([10, 11, 12], name="d")
result = concat([df, s1, s2], axis=1, keys=keys)
expected_values = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
expected_columns = MultiIndex.from_tuples(
[(keys[0], "a"), (keys[0], "b"), (keys[1], "c"), (keys[2], "d")]
)
expected = DataFrame(expected_values, columns=expected_columns)
tm.assert_frame_equal(result, expected)
def test_duplicate_keys_same_frame():
# GH 43595
keys = ["e", "e"]
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
result = concat([df, df], axis=1, keys=keys)
expected_values = [[1, 4, 1, 4], [2, 5, 2, 5], [3, 6, 3, 6]]
expected_columns = MultiIndex.from_tuples(
[(keys[0], "a"), (keys[0], "b"), (keys[1], "a"), (keys[1], "b")]
)
expected = DataFrame(expected_values, columns=expected_columns)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"obj",
[
tm.SubclassedDataFrame({"A": np.arange(0, 10)}),
tm.SubclassedSeries(np.arange(0, 10), name="A"),
],
)
def test_concat_preserves_subclass(obj):
# GH28330 -- preserve subclass
result = concat([obj, obj])
assert isinstance(result, type(obj))
def test_concat_frame_axis0_extension_dtypes():
# preserve extension dtype (through common_dtype mechanism)
df1 = DataFrame({"a": pd.array([1, 2, 3], dtype="Int64")})
df2 = DataFrame({"a": np.array([4, 5, 6])})
result = concat([df1, df2], ignore_index=True)
expected = DataFrame({"a": [1, 2, 3, 4, 5, 6]}, dtype="Int64")
tm.assert_frame_equal(result, expected)
result = concat([df2, df1], ignore_index=True)
expected = DataFrame({"a": [4, 5, 6, 1, 2, 3]}, dtype="Int64")
tm.assert_frame_equal(result, expected)
def test_concat_preserves_extension_int64_dtype():
# GH 24768
df_a = DataFrame({"a": [-1]}, dtype="Int64")
df_b = DataFrame({"b": [1]}, dtype="Int64")
result = concat([df_a, df_b], ignore_index=True)
expected = DataFrame({"a": [-1, None], "b": [None, 1]}, dtype="Int64")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"dtype1,dtype2,expected_dtype",
[
("bool", "bool", "bool"),
("boolean", "bool", "boolean"),
("bool", "boolean", "boolean"),
("boolean", "boolean", "boolean"),
],
)
def test_concat_bool_types(dtype1, dtype2, expected_dtype):
# GH 42800
ser1 = Series([True, False], dtype=dtype1)
ser2 = Series([False, True], dtype=dtype2)
result = concat([ser1, ser2], ignore_index=True)
expected = Series([True, False, False, True], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
("keys", "integrity"),
[
(["red"] * 3, True),
(["red"] * 3, False),
(["red", "blue", "red"], False),
(["red", "blue", "red"], True),
],
)
def test_concat_repeated_keys(keys, integrity):
# GH: 20816
series_list = [Series({"a": 1}), Series({"b": 2}), Series({"c": 3})]
result = concat(series_list, keys=keys, verify_integrity=integrity)
tuples = list(zip(keys, ["a", "b", "c"]))
expected = Series([1, 2, 3], index=MultiIndex.from_tuples(tuples))
tm.assert_series_equal(result, expected)
def test_concat_null_object_with_dti():
# GH#40841
dti = pd.DatetimeIndex(
["2021-04-08 21:21:14+00:00"], dtype="datetime64[ns, UTC]", name="Time (UTC)"
)
right = DataFrame(data={"C": [0.5274]}, index=dti)
idx = Index([None], dtype="object", name="Maybe Time (UTC)")
left = DataFrame(data={"A": [None], "B": [np.nan]}, index=idx)
result = concat([left, right], axis="columns")
exp_index = Index([None, dti[0]], dtype=object)
expected = DataFrame(
{
"A": np.array([None, np.nan], dtype=object),
"B": [np.nan, np.nan],
"C": [np.nan, 0.5274],
},
index=exp_index,
)
tm.assert_frame_equal(result, expected)
def test_concat_multiindex_with_empty_rangeindex():
# GH#41234
mi = MultiIndex.from_tuples([("B", 1), ("C", 1)])
df1 = DataFrame([[1, 2]], columns=mi)
df2 = DataFrame(index=[1], columns=pd.RangeIndex(0))
result = concat([df1, df2])
expected = DataFrame([[1, 2], [np.nan, np.nan]], columns=mi)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"data",
[
Series(data=[1, 2]),
DataFrame(
data={
"col1": [1, 2],
}
),
DataFrame(dtype=float),
Series(dtype=float),
],
)
def test_concat_drop_attrs(data):
# GH#41828
df1 = data.copy()
df1.attrs = {1: 1}
df2 = data.copy()
df2.attrs = {1: 2}
df = concat([df1, df2])
assert len(df.attrs) == 0
@pytest.mark.parametrize(
"data",
[
Series(data=[1, 2]),
DataFrame(
data={
"col1": [1, 2],
}
),
DataFrame(dtype=float),
Series(dtype=float),
],
)
def test_concat_retain_attrs(data):
# GH#41828
df1 = data.copy()
df1.attrs = {1: 1}
df2 = data.copy()
df2.attrs = {1: 1}
df = concat([df1, df2])
assert df.attrs[1] == 1
@td.skip_array_manager_invalid_test
@pytest.mark.parametrize("df_dtype", ["float64", "int64", "datetime64[ns]"])
@pytest.mark.parametrize("empty_dtype", [None, "float64", "object"])
def test_concat_ignore_empty_object_float(empty_dtype, df_dtype):
# https://github.com/pandas-dev/pandas/issues/45637
df = DataFrame({"foo": [1, 2], "bar": [1, 2]}, dtype=df_dtype)
empty = DataFrame(columns=["foo", "bar"], dtype=empty_dtype)
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
warn = None
if df_dtype == "datetime64[ns]" or (
df_dtype == "float64" and empty_dtype != "float64"
):
warn = FutureWarning
with tm.assert_produces_warning(warn, match=msg):
result = concat([empty, df])
expected = df
if df_dtype == "int64":
# TODO what exact behaviour do we want for integer eventually?
if empty_dtype == "float64":
expected = df.astype("float64")
else:
expected = df.astype("object")
tm.assert_frame_equal(result, expected)
@td.skip_array_manager_invalid_test
@pytest.mark.parametrize("df_dtype", ["float64", "int64", "datetime64[ns]"])
@pytest.mark.parametrize("empty_dtype", [None, "float64", "object"])
def test_concat_ignore_all_na_object_float(empty_dtype, df_dtype):
df = DataFrame({"foo": [1, 2], "bar": [1, 2]}, dtype=df_dtype)
empty = DataFrame({"foo": [np.nan], "bar": [np.nan]}, dtype=empty_dtype)
if df_dtype == "int64":
# TODO what exact behaviour do we want for integer eventually?
if empty_dtype == "object":
df_dtype = "object"
else:
df_dtype = "float64"
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
warn = None
if empty_dtype != df_dtype and empty_dtype is not None:
warn = FutureWarning
elif df_dtype == "datetime64[ns]":
warn = FutureWarning
with tm.assert_produces_warning(warn, match=msg):
result = concat([empty, df], ignore_index=True)
expected = DataFrame({"foo": [np.nan, 1, 2], "bar": [np.nan, 1, 2]}, dtype=df_dtype)
tm.assert_frame_equal(result, expected)
@td.skip_array_manager_invalid_test
def test_concat_ignore_empty_from_reindex():
# https://github.com/pandas-dev/pandas/pull/43507#issuecomment-920375856
df1 = DataFrame({"a": [1], "b": [pd.Timestamp("2012-01-01")]})
df2 = DataFrame({"a": [2]})
aligned = df2.reindex(columns=df1.columns)
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = concat([df1, aligned], ignore_index=True)
expected = df1 = DataFrame({"a": [1, 2], "b": [pd.Timestamp("2012-01-01"), pd.NaT]})
tm.assert_frame_equal(result, expected)
def test_concat_mismatched_keys_length():
# GH#43485
ser = Series(range(5))
sers = [ser + n for n in range(4)]
keys = ["A", "B", "C"]
msg = r"The behavior of pd.concat with len\(keys\) != len\(objs\) is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
concat(sers, keys=keys, axis=1)
with tm.assert_produces_warning(FutureWarning, match=msg):
concat(sers, keys=keys, axis=0)
with tm.assert_produces_warning(FutureWarning, match=msg):
concat((x for x in sers), keys=(y for y in keys), axis=1)
with tm.assert_produces_warning(FutureWarning, match=msg):
concat((x for x in sers), keys=(y for y in keys), axis=0)
def test_concat_multiindex_with_category():
df1 = DataFrame(
{
"c1": Series(list("abc"), dtype="category"),
"c2": Series(list("eee"), dtype="category"),
"i2": Series([1, 2, 3]),
}
)
df1 = df1.set_index(["c1", "c2"])
df2 = DataFrame(
{
"c1": Series(list("abc"), dtype="category"),
"c2": Series(list("eee"), dtype="category"),
"i2": Series([4, 5, 6]),
}
)
df2 = df2.set_index(["c1", "c2"])
result = concat([df1, df2])
expected = DataFrame(
{
"c1": Series(list("abcabc"), dtype="category"),
"c2": Series(list("eeeeee"), dtype="category"),
"i2": Series([1, 2, 3, 4, 5, 6]),
}
)
expected = expected.set_index(["c1", "c2"])
tm.assert_frame_equal(result, expected)
def test_concat_datetime64_diff_resolution():
# GH#53640
df1 = DataFrame({"a": [0, 1], "b": [4, 5]}, dtype="datetime64[s]")
df2 = DataFrame({"a": [2, 3], "b": [6, 7]}, dtype="datetime64[ms]")
result = concat([df1, df2])
expected = DataFrame(
data={"a": [0, 1000, 2, 3], "b": [4000, 5000, 6, 7]},
index=[0, 1, 0, 1],
dtype="datetime64[ms]",
)
tm.assert_frame_equal(result, expected)