diff --git a/Chapter1_Introduction/Ch1_Introduction_PyMC2.ipynb b/Chapter1_Introduction/Ch1_Introduction_PyMC2.ipynb index 26b7b71a..65dbd824 100644 --- a/Chapter1_Introduction/Ch1_Introduction_PyMC2.ipynb +++ b/Chapter1_Introduction/Ch1_Introduction_PyMC2.ipynb @@ -803,7 +803,7 @@ "ax.set_autoscaley_on(False)\n", "\n", "plt.hist(lambda_1_samples, histtype='stepfilled', bins=30, alpha=0.85,\n", - " label=\"posterior of $\\lambda_1$\", color=\"#A60628\", normed=True)\n", + " label=\"posterior of $\\lambda_1$\", color=\"#A60628\", density=True)\n", "plt.legend(loc=\"upper left\")\n", "plt.title(r\"\"\"Posterior distributions of the variables\n", " $\\lambda_1,\\;\\lambda_2,\\;\\tau$\"\"\")\n", @@ -813,7 +813,7 @@ "ax = plt.subplot(312)\n", "ax.set_autoscaley_on(False)\n", "plt.hist(lambda_2_samples, histtype='stepfilled', bins=30, alpha=0.85,\n", - " label=\"posterior of $\\lambda_2$\", color=\"#7A68A6\", normed=True)\n", + " label=\"posterior of $\\lambda_2$\", color=\"#7A68A6\", density=True)\n", "plt.legend(loc=\"upper left\")\n", "plt.xlim([15, 30])\n", "plt.xlabel(\"$\\lambda_2$ value\")\n", diff --git a/Chapter2_MorePyMC/Ch2_MorePyMC_PyMC2.ipynb b/Chapter2_MorePyMC/Ch2_MorePyMC_PyMC2.ipynb index a6e598ae..3bc78f7f 100644 --- a/Chapter2_MorePyMC/Ch2_MorePyMC_PyMC2.ipynb +++ b/Chapter2_MorePyMC/Ch2_MorePyMC_PyMC2.ipynb @@ -360,7 +360,7 @@ "\n", "\n", "samples = [lambda_1.random() for i in range(20000)]\n", - "plt.hist(samples, bins=70, normed=True, histtype=\"stepfilled\")\n", + "plt.hist(samples, bins=70, density=True, histtype=\"stepfilled\")\n", "plt.title(\"Prior distribution for $\\lambda_1$\")\n", "plt.xlim(0, 8);" ] @@ -826,7 +826,7 @@ "figsize(12.5, 4)\n", "plt.title(\"Posterior distribution of $p_A$, the true effectiveness of site A\")\n", "plt.vlines(p_true, 0, 90, linestyle=\"--\", label=\"true $p_A$ (unknown)\")\n", - "plt.hist(mcmc.trace(\"p\")[:], bins=25, histtype=\"stepfilled\", normed=True)\n", + "plt.hist(mcmc.trace(\"p\")[:], bins=25, histtype=\"stepfilled\", density=True)\n", "plt.legend();" ] }, @@ -979,7 +979,7 @@ "\n", "plt.xlim(0, .1)\n", "plt.hist(p_A_samples, histtype='stepfilled', bins=25, alpha=0.85,\n", - " label=\"posterior of $p_A$\", color=\"#A60628\", normed=True)\n", + " label=\"posterior of $p_A$\", color=\"#A60628\", density=True)\n", "plt.vlines(true_p_A, 0, 80, linestyle=\"--\", label=\"true $p_A$ (unknown)\")\n", "plt.legend(loc=\"upper right\")\n", "plt.title(\"Posterior distributions of $p_A$, $p_B$, and delta unknowns\")\n", @@ -988,13 +988,13 @@ "\n", "plt.xlim(0, .1)\n", "plt.hist(p_B_samples, histtype='stepfilled', bins=25, alpha=0.85,\n", - " label=\"posterior of $p_B$\", color=\"#467821\", normed=True)\n", + " label=\"posterior of $p_B$\", color=\"#467821\", density=True)\n", "plt.vlines(true_p_B, 0, 80, linestyle=\"--\", label=\"true $p_B$ (unknown)\")\n", "plt.legend(loc=\"upper right\")\n", "\n", "ax = plt.subplot(313)\n", "plt.hist(delta_samples, histtype='stepfilled', bins=30, alpha=0.85,\n", - " label=\"posterior of delta\", color=\"#7A68A6\", normed=True)\n", + " label=\"posterior of delta\", color=\"#7A68A6\", density=True)\n", "plt.vlines(true_p_A - true_p_B, 0, 60, linestyle=\"--\",\n", " label=\"true delta (unknown)\")\n", "plt.vlines(0, 0, 60, color=\"black\", alpha=0.2)\n", @@ -1353,7 +1353,7 @@ "source": [ "figsize(12.5, 3)\n", "p_trace = mcmc.trace(\"freq_cheating\")[:]\n", - "plt.hist(p_trace, histtype=\"stepfilled\", normed=True, alpha=0.85, bins=30,\n", + "plt.hist(p_trace, histtype=\"stepfilled\", density=True, alpha=0.85, bins=30,\n", " label=\"posterior distribution\", color=\"#348ABD\")\n", "plt.vlines([.05, .35], [0, 0], [5, 5], alpha=0.3)\n", "plt.xlim(0, 1)\n", @@ -1479,7 +1479,7 @@ "source": [ "figsize(12.5, 3)\n", "p_trace = mcmc.trace(\"freq_cheating\")[:]\n", - "plt.hist(p_trace, histtype=\"stepfilled\", normed=True, alpha=0.85, bins=30,\n", + "plt.hist(p_trace, histtype=\"stepfilled\", density=True, alpha=0.85, bins=30,\n", " label=\"posterior distribution\", color=\"#348ABD\")\n", "plt.vlines([.05, .35], [0, 0], [5, 5], alpha=0.2)\n", "plt.xlim(0, 1)\n", @@ -1910,12 +1910,12 @@ "plt.subplot(211)\n", "plt.title(r\"Posterior distributions of the variables $\\alpha, \\beta$\")\n", "plt.hist(beta_samples, histtype='stepfilled', bins=35, alpha=0.85,\n", - " label=r\"posterior of $\\beta$\", color=\"#7A68A6\", normed=True)\n", + " label=r\"posterior of $\\beta$\", color=\"#7A68A6\", density=True)\n", "plt.legend()\n", "\n", "plt.subplot(212)\n", "plt.hist(alpha_samples, histtype='stepfilled', bins=35, alpha=0.85,\n", - " label=r\"posterior of $\\alpha$\", color=\"#A60628\", normed=True)\n", + " label=r\"posterior of $\\alpha$\", color=\"#A60628\", density=True)\n", "plt.legend();" ] }, @@ -2074,7 +2074,7 @@ "prob_31 = logistic(31, beta_samples, alpha_samples)\n", "\n", "plt.xlim(0.995, 1)\n", - "plt.hist(prob_31, bins=1000, normed=True, histtype='stepfilled')\n", + "plt.hist(prob_31, bins=1000, density=True, histtype='stepfilled')\n", "plt.title(\"Posterior distribution of probability of defect, given $t = 31$\")\n", "plt.xlabel(\"probability of defect occurring in O-ring\");" ] diff --git a/Chapter2_MorePyMC/Ch2_MorePyMC_PyMC3.ipynb b/Chapter2_MorePyMC/Ch2_MorePyMC_PyMC3.ipynb index c28ea325..3eae5093 100644 --- a/Chapter2_MorePyMC/Ch2_MorePyMC_PyMC3.ipynb +++ b/Chapter2_MorePyMC/Ch2_MorePyMC_PyMC3.ipynb @@ -442,7 +442,7 @@ "\n", "\n", "samples = lambda_1.random(size=20000)\n", - "plt.hist(samples, bins=70, normed=True, histtype=\"stepfilled\")\n", + "plt.hist(samples, bins=70, density=True, histtype=\"stepfilled\")\n", "plt.title(\"Prior distribution for $\\lambda_1$\")\n", "plt.xlim(0, 8);" ] @@ -894,7 +894,7 @@ "figsize(12.5, 4)\n", "plt.title(\"Posterior distribution of $p_A$, the true effectiveness of site A\")\n", "plt.vlines(p_true, 0, 90, linestyle=\"--\", label=\"true $p_A$ (unknown)\")\n", - "plt.hist(burned_trace[\"p\"], bins=25, histtype=\"stepfilled\", normed=True)\n", + "plt.hist(burned_trace[\"p\"], bins=25, histtype=\"stepfilled\", density=True)\n", "plt.legend();" ] }, @@ -1049,7 +1049,7 @@ "\n", "plt.xlim(0, .1)\n", "plt.hist(p_A_samples, histtype='stepfilled', bins=25, alpha=0.85,\n", - " label=\"posterior of $p_A$\", color=\"#A60628\", normed=True)\n", + " label=\"posterior of $p_A$\", color=\"#A60628\", density=True)\n", "plt.vlines(true_p_A, 0, 80, linestyle=\"--\", label=\"true $p_A$ (unknown)\")\n", "plt.legend(loc=\"upper right\")\n", "plt.title(\"Posterior distributions of $p_A$, $p_B$, and delta unknowns\")\n", @@ -1058,13 +1058,13 @@ "\n", "plt.xlim(0, .1)\n", "plt.hist(p_B_samples, histtype='stepfilled', bins=25, alpha=0.85,\n", - " label=\"posterior of $p_B$\", color=\"#467821\", normed=True)\n", + " label=\"posterior of $p_B$\", color=\"#467821\", density=True)\n", "plt.vlines(true_p_B, 0, 80, linestyle=\"--\", label=\"true $p_B$ (unknown)\")\n", "plt.legend(loc=\"upper right\")\n", "\n", "ax = plt.subplot(313)\n", "plt.hist(delta_samples, histtype='stepfilled', bins=30, alpha=0.85,\n", - " label=\"posterior of delta\", color=\"#7A68A6\", normed=True)\n", + " label=\"posterior of delta\", color=\"#7A68A6\", density=True)\n", "plt.vlines(true_p_A - true_p_B, 0, 60, linestyle=\"--\",\n", " label=\"true delta (unknown)\")\n", "plt.vlines(0, 0, 60, color=\"black\", alpha=0.2)\n", @@ -1428,7 +1428,7 @@ "source": [ "figsize(12.5, 3)\n", "p_trace = burned_trace[\"freq_cheating\"][15000:]\n", - "plt.hist(p_trace, histtype=\"stepfilled\", normed=True, alpha=0.85, bins=30, \n", + "plt.hist(p_trace, histtype=\"stepfilled\", density=True, alpha=0.85, bins=30, \n", " label=\"posterior distribution\", color=\"#348ABD\")\n", "plt.vlines([.05, .35], [0, 0], [5, 5], alpha=0.3)\n", "plt.xlim(0, 1)\n", @@ -1559,7 +1559,7 @@ "source": [ "figsize(12.5, 3)\n", "p_trace = burned_trace[\"freq_cheating\"]\n", - "plt.hist(p_trace, histtype=\"stepfilled\", normed=True, alpha=0.85, bins=30, \n", + "plt.hist(p_trace, histtype=\"stepfilled\", density=True, alpha=0.85, bins=30, \n", " label=\"posterior distribution\", color=\"#348ABD\")\n", "plt.vlines([.05, .35], [0, 0], [5, 5], alpha=0.2)\n", "plt.xlim(0, 1)\n", @@ -1968,12 +1968,12 @@ "plt.subplot(211)\n", "plt.title(r\"Posterior distributions of the variables $\\alpha, \\beta$\")\n", "plt.hist(beta_samples, histtype='stepfilled', bins=35, alpha=0.85,\n", - " label=r\"posterior of $\\beta$\", color=\"#7A68A6\", normed=True)\n", + " label=r\"posterior of $\\beta$\", color=\"#7A68A6\", density=True)\n", "plt.legend()\n", "\n", "plt.subplot(212)\n", "plt.hist(alpha_samples, histtype='stepfilled', bins=35, alpha=0.85,\n", - " label=r\"posterior of $\\alpha$\", color=\"#A60628\", normed=True)\n", + " label=r\"posterior of $\\alpha$\", color=\"#A60628\", density=True)\n", "plt.legend();" ] }, @@ -2132,7 +2132,7 @@ "prob_31 = logistic(31, beta_samples, alpha_samples)\n", "\n", "plt.xlim(0.995, 1)\n", - "plt.hist(prob_31, bins=1000, normed=True, histtype='stepfilled')\n", + "plt.hist(prob_31, bins=1000, density=True, histtype='stepfilled')\n", "plt.title(\"Posterior distribution of probability of defect, given $t = 31$\")\n", "plt.xlabel(\"probability of defect occurring in O-ring\");" ] diff --git a/Chapter2_MorePyMC/Ch2_MorePyMC_TFP.ipynb b/Chapter2_MorePyMC/Ch2_MorePyMC_TFP.ipynb index 3848d30b..6f04a856 100644 --- a/Chapter2_MorePyMC/Ch2_MorePyMC_TFP.ipynb +++ b/Chapter2_MorePyMC/Ch2_MorePyMC_TFP.ipynb @@ -679,7 +679,7 @@ "\n", "# Visualize our stepwise prior distribution\n", "plt.figure(figsize(12.5, 5))\n", - "plt.hist(lambda_1_, bins=70, normed=True, histtype=\"stepfilled\")\n", + "plt.hist(lambda_1_, bins=70, density=True, histtype=\"stepfilled\")\n", "plt.title(r\"Prior distribution for $\\lambda_1$\")\n", "plt.xlim(0, 8);" ], @@ -1503,7 +1503,7 @@ "plt.figure(figsize(12.5, 4))\n", "plt.title(\"Posterior distribution of $p_A$, the true effectiveness of site A\")\n", "plt.vlines(prob_true, 0, 90, linestyle=\"--\", label=\"true $p_A$ (unknown)\")\n", - "plt.hist(burned_prob_A_trace_, bins=25, histtype=\"stepfilled\", normed=True)\n", + "plt.hist(burned_prob_A_trace_, bins=25, histtype=\"stepfilled\", density=True)\n", "plt.legend();" ], "execution_count": 20, @@ -1829,7 +1829,7 @@ "\n", "plt.xlim(0, .1)\n", "plt.hist(burned_prob_A_trace_, histtype='stepfilled', bins=25, alpha=0.85,\n", - " label=\"posterior of $p_A$\", color=TFColor[0], normed=True)\n", + " label=\"posterior of $p_A$\", color=TFColor[0], density=True)\n", "plt.vlines(true_prob_A_, 0, 80, linestyle=\"--\", label=\"true $p_A$ (unknown)\")\n", "plt.legend(loc=\"upper right\")\n", "plt.title(\"Posterior distributions of $p_A$, $p_B$, and delta unknowns\")\n", @@ -1838,13 +1838,13 @@ "\n", "plt.xlim(0, .1)\n", "plt.hist(burned_prob_B_trace_, histtype='stepfilled', bins=25, alpha=0.85,\n", - " label=\"posterior of $p_B$\", color=TFColor[2], normed=True)\n", + " label=\"posterior of $p_B$\", color=TFColor[2], density=True)\n", "plt.vlines(true_prob_B_, 0, 80, linestyle=\"--\", label=\"true $p_B$ (unknown)\")\n", "plt.legend(loc=\"upper right\")\n", "\n", "ax = plt.subplot(313)\n", "plt.hist(burned_delta_trace_, histtype='stepfilled', bins=30, alpha=0.85,\n", - " label=\"posterior of delta\", color=TFColor[6], normed=True)\n", + " label=\"posterior of delta\", color=TFColor[6], density=True)\n", "plt.vlines(true_prob_A_ - true_prob_B_, 0, 60, linestyle=\"--\",\n", " label=\"true delta (unknown)\")\n", "plt.vlines(0, 0, 60, color=\"black\", alpha=0.2)\n", @@ -2796,7 +2796,7 @@ "source": [ "plt.figure(figsize(12.5, 6))\n", "p_trace_ = freq_cheating_samples_\n", - "plt.hist(p_trace_, histtype=\"stepfilled\", normed=True, alpha=0.85, bins=30, \n", + "plt.hist(p_trace_, histtype=\"stepfilled\", density=True, alpha=0.85, bins=30, \n", " label=\"posterior distribution\", color=TFColor[3])\n", "plt.vlines([.1, .40], [0, 0], [5, 5], alpha=0.2)\n", "plt.xlim(0, 1)\n", diff --git a/Chapter3_MCMC/Ch3_IntroMCMC_PyMC2.ipynb b/Chapter3_MCMC/Ch3_IntroMCMC_PyMC2.ipynb index 1f09ba5c..5de9c7ec 100644 --- a/Chapter3_MCMC/Ch3_IntroMCMC_PyMC2.ipynb +++ b/Chapter3_MCMC/Ch3_IntroMCMC_PyMC2.ipynb @@ -801,7 +801,7 @@ "posterior_std_means = std_trace.mean(axis=0)\n", "posterior_p_mean = mcmc.trace(\"p\")[:].mean()\n", "\n", - "plt.hist(data, bins=20, histtype=\"step\", normed=True, color=\"k\",\n", + "plt.hist(data, bins=20, histtype=\"step\", density=True, color=\"k\",\n", " lw=2, label=\"histogram of data\")\n", "y = posterior_p_mean * norm.pdf(x, loc=posterior_center_means[0],\n", " scale=posterior_std_means[0])\n", diff --git a/Chapter3_MCMC/Ch3_IntroMCMC_PyMC3.ipynb b/Chapter3_MCMC/Ch3_IntroMCMC_PyMC3.ipynb index 7e4ebf8b..95fa0c1d 100644 --- a/Chapter3_MCMC/Ch3_IntroMCMC_PyMC3.ipynb +++ b/Chapter3_MCMC/Ch3_IntroMCMC_PyMC3.ipynb @@ -785,7 +785,7 @@ "posterior_std_means = std_trace.mean(axis=0)\n", "posterior_p_mean = trace[\"p\"].mean()\n", "\n", - "plt.hist(data, bins=20, histtype=\"step\", normed=True, color=\"k\",\n", + "plt.hist(data, bins=20, histtype=\"step\", density=True, color=\"k\",\n", " lw=2, label=\"histogram of data\")\n", "y = posterior_p_mean * norm.pdf(x, loc=posterior_center_means[0],\n", " scale=posterior_std_means[0])\n", diff --git a/Chapter4_TheGreatestTheoremNeverTold/Ch4_LawOfLargeNumbers_PyMC2.ipynb b/Chapter4_TheGreatestTheoremNeverTold/Ch4_LawOfLargeNumbers_PyMC2.ipynb index 1df6822e..7c0a8d9d 100644 --- a/Chapter4_TheGreatestTheoremNeverTold/Ch4_LawOfLargeNumbers_PyMC2.ipynb +++ b/Chapter4_TheGreatestTheoremNeverTold/Ch4_LawOfLargeNumbers_PyMC2.ipynb @@ -601,10 +601,10 @@ "for i in range(len(submissions)):\n", " j = submissions[i]\n", " posteriors.append(posterior_upvote_ratio(votes[j, 0], votes[j, 1]))\n", - " plt.hist(posteriors[i], bins=18, normed=True, alpha=.9,\n", + " plt.hist(posteriors[i], bins=18, density=True, alpha=.9,\n", " histtype=\"step\", color=colours[i % 5], lw=3,\n", " label='(%d up:%d down)\\n%s...' % (votes[j, 0], votes[j, 1], contents[j][:50]))\n", - " plt.hist(posteriors[i], bins=18, normed=True, alpha=.2,\n", + " plt.hist(posteriors[i], bins=18, density=True, alpha=.2,\n", " histtype=\"stepfilled\", color=colours[i], lw=3, )\n", "\n", "plt.legend(loc=\"upper left\")\n", @@ -654,10 +654,10 @@ "\n", "for i in range(len(submissions)):\n", " j = submissions[i]\n", - " plt.hist(posteriors[i], bins=20, normed=True, alpha=.9,\n", + " plt.hist(posteriors[i], bins=20, density=True, alpha=.9,\n", " histtype=\"step\", color=colours[i], lw=3,\n", " label='(%d up:%d down)\\n%s...' % (votes[j, 0], votes[j, 1], contents[j][:50]))\n", - " plt.hist(posteriors[i], bins=20, normed=True, alpha=.2,\n", + " plt.hist(posteriors[i], bins=20, density=True, alpha=.2,\n", " histtype=\"stepfilled\", color=colours[i], lw=3, )\n", " v = np.sort(posteriors[i])[int(0.05 * N)]\n", " # plt.vlines( v, 0, 15 , color = \"k\", alpha = 1, linewidths=3 )\n", diff --git a/Chapter5_LossFunctions/Ch5_LossFunctions_PyMC2.ipynb b/Chapter5_LossFunctions/Ch5_LossFunctions_PyMC2.ipynb index 8622ada8..1a8e87d3 100644 --- a/Chapter5_LossFunctions/Ch5_LossFunctions_PyMC2.ipynb +++ b/Chapter5_LossFunctions/Ch5_LossFunctions_PyMC2.ipynb @@ -297,7 +297,7 @@ "plt.plot(x, stats.norm.pdf(x, 35000, 7500), c=\"k\", lw=2,\n", " label=\"prior dist. of suite price\")\n", "\n", - "_hist = plt.hist(price_trace, bins=35, normed=True, histtype=\"stepfilled\")\n", + "_hist = plt.hist(price_trace, bins=35, density=True, histtype=\"stepfilled\")\n", "plt.title(\"Posterior of the true price estimate\")\n", "plt.vlines(mu_prior, 0, 1.1 * np.max(_hist[0]), label=\"prior's mean\",\n", " linestyles=\"--\")\n", diff --git a/Chapter5_LossFunctions/Ch5_LossFunctions_TFP.ipynb b/Chapter5_LossFunctions/Ch5_LossFunctions_TFP.ipynb index 65fe400f..423002bf 100644 --- a/Chapter5_LossFunctions/Ch5_LossFunctions_TFP.ipynb +++ b/Chapter5_LossFunctions/Ch5_LossFunctions_TFP.ipynb @@ -722,7 +722,7 @@ "plt.plot(prices_, prior_, c=\"k\", lw=2,\n", " label=\"prior dist. of suite price\")\n", "\n", - "hist = plt.hist(posterior_price_predictive_samples_, bins=35, normed=True, histtype=\"stepfilled\")\n", + "hist = plt.hist(posterior_price_predictive_samples_, bins=35, density=True, histtype=\"stepfilled\")\n", "plt.title(\"Posterior of the true price estimate\")\n", "plt.vlines(mu_prior, 0, 1.1 * np.max(hist[0]), label=\"prior's mean\",\n", " linestyles=\"--\")\n", diff --git a/Chapter6_Priorities/Ch6_Priors_PyMC2.ipynb b/Chapter6_Priorities/Ch6_Priors_PyMC2.ipynb index e3fc22f0..64a621a0 100644 --- a/Chapter6_Priorities/Ch6_Priors_PyMC2.ipynb +++ b/Chapter6_Priorities/Ch6_Priors_PyMC2.ipynb @@ -1184,7 +1184,7 @@ " returns[:, i] = _returns\n", " plt.subplot(2, 2, i+1)\n", " plt.hist(_returns, bins=20,\n", - " normed=True, histtype=\"stepfilled\",\n", + " density=True, histtype=\"stepfilled\",\n", " color=colors[i], alpha=0.7)\n", " plt.title(_stock + \" returns\")\n", " plt.xlim(-0.15, 0.15)\n", @@ -1258,7 +1258,7 @@ "\n", "for i in range(4):\n", " plt.hist(mu_samples[:, i], alpha=0.8 - 0.05 * i, bins=30,\n", - " histtype=\"stepfilled\", normed=True,\n", + " histtype=\"stepfilled\", density=True,\n", " label=\"%s\" % list(stock_returns.keys())[i])\n", "\n", "plt.vlines(mu_samples.mean(axis=0), 0, 500, linestyle=\"--\", linewidth=.5)\n", @@ -1302,7 +1302,7 @@ "for i in range(4):\n", " plt.subplot(2, 2, i + 1)\n", " plt.hist(mu_samples[:, i], alpha=0.8 - 0.05 * i, bins=30,\n", - " histtype=\"stepfilled\", normed=True, color=colors[i],\n", + " histtype=\"stepfilled\", density=True, color=colors[i],\n", " label=\"%s\" % list(stock_returns.keys())[i])\n", " plt.title(\"%s\" % list(stock_returns.keys())[i])\n", " plt.xlim(-0.15, 0.15)\n", diff --git a/Chapter6_Priorities/Ch6_Priors_PyMC3.ipynb b/Chapter6_Priorities/Ch6_Priors_PyMC3.ipynb index 0694d2da..3275a943 100644 --- a/Chapter6_Priorities/Ch6_Priors_PyMC3.ipynb +++ b/Chapter6_Priorities/Ch6_Priors_PyMC3.ipynb @@ -1258,7 +1258,7 @@ "\n", "for i in range(4):\n", " plt.hist(mu_samples[:,i], alpha = 0.8 - 0.05*i, bins = 30,\n", - " histtype=\"stepfilled\", normed=True, \n", + " histtype=\"stepfilled\", density=True, \n", " label = \"%s\" % stock_returns.columns[i])\n", "\n", "plt.vlines(mu_samples.mean(axis=0), 0, 500, linestyle=\"--\", linewidth = .5)\n", @@ -1302,7 +1302,7 @@ "for i in range(4):\n", " plt.subplot(2,2,i+1)\n", " plt.hist(mu_samples[:,i], alpha = 0.8 - 0.05*i, bins = 30,\n", - " histtype=\"stepfilled\", normed=True, color = colors[i],\n", + " histtype=\"stepfilled\", density=True, color = colors[i],\n", " label = \"%s\" % stock_returns.columns[i])\n", " plt.title(\"%s\" % stock_returns.columns[i])\n", " plt.xlim(-0.15, 0.15)\n", diff --git a/Chapter6_Priorities/Ch6_Priors_TFP.ipynb b/Chapter6_Priorities/Ch6_Priors_TFP.ipynb index d4604502..beb649db 100644 --- a/Chapter6_Priorities/Ch6_Priors_TFP.ipynb +++ b/Chapter6_Priorities/Ch6_Priors_TFP.ipynb @@ -2313,7 +2313,7 @@ "\n", "for i in range(4):\n", " plt.hist(mu_samples_[:,i], alpha = 0.8 - 0.05*i, bins = 30,\n", - " histtype=\"stepfilled\", color=colors[i], normed=True, \n", + " histtype=\"stepfilled\", color=colors[i], density=True, \n", " label = \"%s\" % stock_returns.columns[i])\n", "\n", "plt.vlines(mu_samples_.mean(axis=0), 0, 500, linestyle=\"--\", linewidth = .5)\n", @@ -2373,7 +2373,7 @@ "for i in range(4):\n", " plt.subplot(2,2,i+1)\n", " plt.hist(mu_samples_[:,i], alpha = 0.8 - 0.05*i, bins = 30,\n", - " histtype=\"stepfilled\", normed=True, color = colors[i],\n", + " histtype=\"stepfilled\", density=True, color = colors[i],\n", " label = \"%s\" % stock_returns.columns[i])\n", " plt.title(\"%s\" % stock_returns.columns[i])\n", " plt.xlim(-0.15, 0.15)\n", diff --git a/sandbox/CommitDataForChapter1.ipynb b/sandbox/CommitDataForChapter1.ipynb index 74030b76..bcc8acf2 100644 --- a/sandbox/CommitDataForChapter1.ipynb +++ b/sandbox/CommitDataForChapter1.ipynb @@ -160,7 +160,7 @@ "ax.set_autoscaley_on(False)\n", "\n", "plt.hist(lambda_1_samples, histtype='stepfilled', bins=30, alpha=0.85,\n", - " label=\"posterior of $\\lambda_1$\", color=\"#A60628\", normed=True)\n", + " label=\"posterior of $\\lambda_1$\", color=\"#A60628\", density=True)\n", "plt.legend(loc=\"upper left\")\n", "plt.title(r\"Posterior distributions of the variables \\\n", " $\\lambda_1,\\;\\lambda_2,\\;\\tau$\")\n", @@ -171,7 +171,7 @@ "ax.set_autoscaley_on(False)\n", "\n", "plt.hist(lambda_2_samples, histtype='stepfilled', bins=30, alpha=0.85,\n", - " label=\"posterior of $\\lambda_2$\", color=\"#7A68A6\", normed=True)\n", + " label=\"posterior of $\\lambda_2$\", color=\"#7A68A6\", density=True)\n", "plt.legend(loc=\"upper left\")\n", "\n", "plt.xlabel(\"$\\lambda_2$ value\")\n", diff --git a/sandbox/GithubUsers.ipynb b/sandbox/GithubUsers.ipynb index 795fb2ea..20671284 100644 --- a/sandbox/GithubUsers.ipynb +++ b/sandbox/GithubUsers.ipynb @@ -175,7 +175,7 @@ "\n", "hist(samples, bins=100,\n", " label=\"Uniform prior\",\n", - " normed=True, alpha=0.8,\n", + " density=True, alpha=0.8,\n", " histtype=\"stepfilled\", color=\"#7A68A6\");\n", "\n", "quantiles_mean = np.append(mquantiles(samples, [0.05, 0.5, 0.95]), samples.mean())\n",