diff --git a/Chapter1_Introduction/Ch1_Introduction_PyMC3.ipynb b/Chapter1_Introduction/Ch1_Introduction_PyMC3.ipynb index a0468c22..2a513ada 100644 --- a/Chapter1_Introduction/Ch1_Introduction_PyMC3.ipynb +++ b/Chapter1_Introduction/Ch1_Introduction_PyMC3.ipynb @@ -954,7 +954,7 @@ "### References\n", "\n", "\n", - "- [1] Gelman, Andrew. N.p.. Web. 22 Jan 2013. [N is never large enough](http://andrewgelman.com/2005/07/n_is_never_large).\n", + "- [1] Gelman, Andrew. N.p.. Web. 22 Jan 2013. [N is never large enough](http://andrewgelman.com/2005/07/31/n_is_never_larg).\n", "- [2] Norvig, Peter. 2009. [The Unreasonable Effectiveness of Data](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf).\n", "- [3] Salvatier, J, Wiecki TV, and Fonnesbeck C. (2016) Probabilistic programming in Python using PyMC3. *PeerJ Computer Science* 2:e55 \n", "- [4] Jimmy Lin and Alek Kolcz. Large-Scale Machine Learning at Twitter. Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (SIGMOD 2012), pages 793-804, May 2012, Scottsdale, Arizona.\n",