diff --git a/Chapter6_Priorities/Ch6_Priors_PyMC2.ipynb b/Chapter6_Priorities/Ch6_Priors_PyMC2.ipynb index b69bed49..e3fc22f0 100644 --- a/Chapter6_Priorities/Ch6_Priors_PyMC2.ipynb +++ b/Chapter6_Priorities/Ch6_Priors_PyMC2.ipynb @@ -1378,7 +1378,7 @@ "\n", "With this Bayesian analysis of the stock market, we can throw it into a Mean-Variance optimizer (which I cannot stress enough to not use with frequentist point estimates) and find the minimum. This optimizer balances the tradeoff between a high return and high variance.\n", "\n", - "$$ w_{opt} = \\min_{w} \\frac{1}{N}\\left( \\sum_{i=0}^N \\mu_i^T w - \\frac{\\lambda}{2}w^T\\Sigma_i w \\right)$$\n", + "$$ w_{opt} = \\max_{w} \\frac{1}{N}\\left( \\sum_{i=0}^N \\mu_i^T w - \\frac{\\lambda}{2}w^T\\Sigma_i w \\right)$$\n", "\n", "where $\\mu_i$ and $\\Sigma_i$ are the $i$th posterior estimate of the mean returns and the covariance matrix. This is another example of loss function optimization." ] diff --git a/Chapter6_Priorities/Ch6_Priors_PyMC3.ipynb b/Chapter6_Priorities/Ch6_Priors_PyMC3.ipynb index 0e8d4e63..6306a8f8 100644 --- a/Chapter6_Priorities/Ch6_Priors_PyMC3.ipynb +++ b/Chapter6_Priorities/Ch6_Priors_PyMC3.ipynb @@ -1378,7 +1378,7 @@ "\n", "With this Bayesian analysis of the stock market, we can throw it into a Mean-Variance optimizer (which I cannot stress enough, do not use with frequentist point estimates) and find the minimum. This optimizer balances the tradeoff between a high return and high variance.\n", "\n", - "$$ w_{opt} = \\min_{w} \\frac{1}{N}\\left( \\sum_{i=0}^N \\mu_i^T w - \\frac{\\lambda}{2}w^T\\Sigma_i w \\right)$$\n", + "$$ w_{opt} = \\max_{w} \\frac{1}{N}\\left( \\sum_{i=0}^N \\mu_i^T w - \\frac{\\lambda}{2}w^T\\Sigma_i w \\right)$$\n", "\n", "where $\\mu_i$ and $\\Sigma_i$ are the $i$th posterior estimate of the mean returns and the covariance matrix. This is another example of loss function optimization." ]