|
| 1 | +""" |
| 2 | +Build the superdense coding protocol. This quantum |
| 3 | +circuit can send two classical bits using one quantum |
| 4 | +bit. This circuit is designed using the Qiskit |
| 5 | +framework. This experiment run in IBM Q simulator |
| 6 | +with 1000 shots. |
| 7 | +. |
| 8 | +References: |
| 9 | +https://qiskit.org/textbook/ch-algorithms/superdense-coding.html |
| 10 | +https://en.wikipedia.org/wiki/Superdense_coding |
| 11 | +""" |
| 12 | + |
| 13 | +import math |
| 14 | + |
| 15 | +import qiskit |
| 16 | +from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute |
| 17 | + |
| 18 | + |
| 19 | +def superdense_coding(bit_1: int = 1, bit_2: int = 1) -> qiskit.result.counts.Counts: |
| 20 | + """ |
| 21 | + The input refer to the classical message |
| 22 | + that you wants to send. {'00','01','10','11'} |
| 23 | + result for default values: {11: 1000} |
| 24 | + ┌───┐ ┌───┐ |
| 25 | + qr_0: ─────┤ X ├──────────┤ X ├───── |
| 26 | + ┌───┐└─┬─┘┌───┐┌───┐└─┬─┘┌───┐ |
| 27 | + qr_1: ┤ H ├──■──┤ X ├┤ Z ├──■──┤ H ├ |
| 28 | + └───┘ └───┘└───┘ └───┘ |
| 29 | + cr: 2/══════════════════════════════ |
| 30 | + Args: |
| 31 | + bit_1: bit 1 of classical information to send. |
| 32 | + bit_2: bit 2 of classical information to send. |
| 33 | + Returns: |
| 34 | + qiskit.result.counts.Counts: counts of send state. |
| 35 | + >>> superdense_coding(0,0) |
| 36 | + {'00': 1000} |
| 37 | + >>> superdense_coding(0,1) |
| 38 | + {'01': 1000} |
| 39 | + >>> superdense_coding(-1,0) |
| 40 | + Traceback (most recent call last): |
| 41 | + ... |
| 42 | + ValueError: inputs must be positive. |
| 43 | + >>> superdense_coding(1,'j') |
| 44 | + Traceback (most recent call last): |
| 45 | + ... |
| 46 | + TypeError: inputs must be integers. |
| 47 | + >>> superdense_coding(1,0.5) |
| 48 | + Traceback (most recent call last): |
| 49 | + ... |
| 50 | + ValueError: inputs must be exact integers. |
| 51 | + >>> superdense_coding(2,1) |
| 52 | + Traceback (most recent call last): |
| 53 | + ... |
| 54 | + ValueError: inputs must be less or equal to 1. |
| 55 | + """ |
| 56 | + if (type(bit_1) == str) or (type(bit_2) == str): |
| 57 | + raise TypeError("inputs must be integers.") |
| 58 | + if (bit_1 < 0) or (bit_2 < 0): |
| 59 | + raise ValueError("inputs must be positive.") |
| 60 | + if (math.floor(bit_1) != bit_1) or (math.floor(bit_2) != bit_2): |
| 61 | + raise ValueError("inputs must be exact integers.") |
| 62 | + if (bit_1 > 1) or (bit_2 > 1): |
| 63 | + raise ValueError("inputs must be less or equal to 1.") |
| 64 | + |
| 65 | + # build registers |
| 66 | + qr = QuantumRegister(2, "qr") |
| 67 | + cr = ClassicalRegister(2, "cr") |
| 68 | + |
| 69 | + quantum_circuit = QuantumCircuit(qr, cr) |
| 70 | + |
| 71 | + # entanglement the qubits |
| 72 | + quantum_circuit.h(1) |
| 73 | + quantum_circuit.cx(1, 0) |
| 74 | + |
| 75 | + # send the information |
| 76 | + c_information = str(bit_1) + str(bit_2) |
| 77 | + |
| 78 | + if c_information == "11": |
| 79 | + quantum_circuit.x(1) |
| 80 | + quantum_circuit.z(1) |
| 81 | + elif c_information == "10": |
| 82 | + quantum_circuit.z(1) |
| 83 | + elif c_information == "01": |
| 84 | + quantum_circuit.x(1) |
| 85 | + else: |
| 86 | + quantum_circuit.i(1) |
| 87 | + |
| 88 | + # unentangled the circuit |
| 89 | + quantum_circuit.cx(1, 0) |
| 90 | + quantum_circuit.h(1) |
| 91 | + |
| 92 | + # measure the circuit |
| 93 | + quantum_circuit.measure(qr, cr) |
| 94 | + |
| 95 | + backend = Aer.get_backend("qasm_simulator") |
| 96 | + job = execute(quantum_circuit, backend, shots=1000) |
| 97 | + |
| 98 | + return job.result().get_counts(quantum_circuit) |
| 99 | + |
| 100 | + |
| 101 | +if __name__ == "__main__": |
| 102 | + print(f"Counts for classical state send: {superdense_coding(1,1)}") |
0 commit comments