forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseries_methods.py
189 lines (129 loc) · 4.83 KB
/
series_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from .pandas_vb_common import *
class series_constructor_no_data_datetime_index(object):
goal_time = 0.2
def setup(self):
self.dr = pd.date_range(
start=datetime(2015,10,26),
end=datetime(2016,1,1),
freq='50s'
) # ~100k long
def time_series_constructor_no_data_datetime_index(self):
Series(data=None, index=self.dr)
class series_constructor_dict_data_datetime_index(object):
goal_time = 0.2
def setup(self):
self.dr = pd.date_range(
start=datetime(2015, 10, 26),
end=datetime(2016, 1, 1),
freq='50s'
) # ~100k long
self.data = {d: v for d, v in zip(self.dr, range(len(self.dr)))}
def time_series_constructor_no_data_datetime_index(self):
Series(data=self.data, index=self.dr)
class series_isin_int64(object):
goal_time = 0.2
def setup(self):
self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64')
self.s4 = Series(np.random.randint(1, 100, 10000000)).astype('int64')
self.values = [1, 2]
def time_series_isin_int64(self):
self.s3.isin(self.values)
def time_series_isin_int64_large(self):
self.s4.isin(self.values)
class series_isin_object(object):
goal_time = 0.2
def setup(self):
self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64')
self.values = [1, 2]
self.s4 = self.s3.astype('object')
def time_series_isin_object(self):
self.s4.isin(self.values)
class series_nlargest1(object):
goal_time = 0.2
def setup(self):
self.s1 = Series(np.random.randn(10000))
self.s2 = Series(np.random.randint(1, 10, 10000))
self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64')
self.values = [1, 2]
self.s4 = self.s3.astype('object')
def time_series_nlargest1(self):
self.s1.nlargest(3, keep='last')
self.s1.nlargest(3, keep='first')
class series_nlargest2(object):
goal_time = 0.2
def setup(self):
self.s1 = Series(np.random.randn(10000))
self.s2 = Series(np.random.randint(1, 10, 10000))
self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64')
self.values = [1, 2]
self.s4 = self.s3.astype('object')
def time_series_nlargest2(self):
self.s2.nlargest(3, keep='last')
self.s2.nlargest(3, keep='first')
class series_nsmallest2(object):
goal_time = 0.2
def setup(self):
self.s1 = Series(np.random.randn(10000))
self.s2 = Series(np.random.randint(1, 10, 10000))
self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64')
self.values = [1, 2]
self.s4 = self.s3.astype('object')
def time_series_nsmallest2(self):
self.s2.nsmallest(3, keep='last')
self.s2.nsmallest(3, keep='first')
class series_dropna_int64(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.randint(1, 10, 1000000))
def time_series_dropna_int64(self):
self.s.dropna()
class series_dropna_datetime(object):
goal_time = 0.2
def setup(self):
self.s = Series(pd.date_range('2000-01-01', freq='S', periods=1000000))
self.s[np.random.randint(1, 1000000, 100)] = pd.NaT
def time_series_dropna_datetime(self):
self.s.dropna()
class series_map_dict(object):
goal_time = 0.2
def setup(self):
map_size = 1000
self.s = Series(np.random.randint(0, map_size, 10000))
self.map_dict = {i: map_size - i for i in range(map_size)}
def time_series_map_dict(self):
self.s.map(self.map_dict)
class series_map_series(object):
goal_time = 0.2
def setup(self):
map_size = 1000
self.s = Series(np.random.randint(0, map_size, 10000))
self.map_series = Series(map_size - np.arange(map_size))
def time_series_map_series(self):
self.s.map(self.map_series)
class series_clip(object):
goal_time = 0.2
def setup(self):
self.s = pd.Series(np.random.randn(50))
def time_series_dropna_datetime(self):
self.s.clip(0, 1)
class series_value_counts(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.randint(0, 1000, size=100000))
self.s2 = self.s.astype(float)
self.K = 1000
self.N = 100000
self.uniques = tm.makeStringIndex(self.K).values
self.s3 = Series(np.tile(self.uniques, (self.N // self.K)))
def time_value_counts_int64(self):
self.s.value_counts()
def time_value_counts_float64(self):
self.s2.value_counts()
def time_value_counts_strings(self):
self.s.value_counts()
class series_dir(object):
goal_time = 0.2
def setup(self):
self.s = Series(index=tm.makeStringIndex(10000))
def time_dir_strings(self):
dir(self.s)