forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmith_waterman.py
97 lines (81 loc) · 2.92 KB
/
smith_waterman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm
# Score constants
"""
Score constants used in the Smith-Waterman algorithm. Matches are given a positive
score while mismatches are given a negative score. Gaps are also penalized.
"""
MATCH = 1
MISMATCH = -1
GAP = -2
def score_function(source_char: str, target_char: str) -> int:
"""
Calculate the score for a character pair based on whether they match or mismatch.
Returns 1 if the characters match, -1 if they mismatch.
>>> score_function('A', 'A')
1
>>> score_function('A', 'C')
-1
"""
if source_char == target_char:
return MATCH
else:
return MISMATCH
def smith_waterman(query: str, subject: str) -> list[list[int]]:
"""
Perform the Smith-Waterman local sequence alignment algorithm.
Returns a 2D list representing the score matrix. Each value in the matrix
corresponds to the score of the best local alignment ending at that point.
>>> smith_waterman('ACAC', 'CA')
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]]
"""
# Initialize score matrix
m = len(query)
n = len(subject)
score = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
# Calculate scores for each cell
match = score[i - 1][j - 1] + score_function(query[i - 1], subject[j - 1])
delete = score[i - 1][j] + GAP
insert = score[i][j - 1] + GAP
# Take maximum score
score[i][j] = max(0, match, delete, insert)
return score
def traceback(score: list[list[int]], query: str, subject: str) -> str:
r"""
Perform traceback to find the optimal local alignment.
Starts from the highest scoring cell in the matrix and traces back recursively
until a 0 score is found. Returns the alignment strings.
>>> traceback([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]], 'ACAC', 'CA')
'CAC\nCA-'
"""
# Traceback logic to find optimal alignment
i = len(query)
j = len(subject)
align1 = ""
align2 = ""
while i > 0 and j > 0:
if score[i][j] == score[i - 1][j - 1] + score_function(
query[i - 1], subject[j - 1]
):
# optimal path is a diagonal take both letters
align1 = query[i - 1] + align1
align2 = subject[j - 1] + align2
i -= 1
j -= 1
elif score[i][j] == score[i - 1][j] + GAP:
# optimal path is a vertical
align1 = query[i - 1] + align1
align2 = "-" + align2
i -= 1
else:
# optimal path is a horizontal
align1 = "-" + align1
align2 = subject[j - 1] + align2
j -= 1
return f"{align1}\n{align2}"
if __name__ == "__main__":
query = "HEAGAWGHEE"
subject = "PAWHEAE"
score = smith_waterman(query, subject)
print(traceback(score, query, subject))