-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathkafka.py
290 lines (229 loc) · 9.75 KB
/
kafka.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import typing
from typing import Any, List
from . import meta
from azure.functions import _json as json
from ._kafka import AbstractKafkaEvent
class KafkaEvent(AbstractKafkaEvent):
"""A concrete implementation of Kafka event message type."""
def __init__(self, *,
body: bytes,
trigger_metadata: typing.Mapping[str, meta.Datum] = None,
key: typing.Optional[str] = None,
offset: typing.Optional[int] = None,
partition: typing.Optional[int] = None,
topic: typing.Optional[str] = None,
timestamp: typing.Optional[str] = None,
headers: typing.Optional[list] = None) -> None:
self.__body = body
self.__trigger_metadata = trigger_metadata
self.__key = key
self.__offset = offset
self.__partition = partition
self.__topic = topic
self.__timestamp = timestamp
self.__headers = headers
# Cache for trigger metadata after Python object conversion
self._trigger_metadata_pyobj: typing.Optional[
typing.Mapping[str, typing.Any]] = None
def get_body(self) -> bytes:
return self.__body
@property
def key(self) -> typing.Optional[str]:
return self.__key
@property
def offset(self) -> typing.Optional[int]:
return self.__offset
@property
def partition(self) -> typing.Optional[int]:
return self.__partition
@property
def topic(self) -> typing.Optional[str]:
return self.__topic
@property
def timestamp(self) -> typing.Optional[str]:
return self.__timestamp
@property
def headers(self) -> typing.Optional[list]:
return self.__headers
@property
def metadata(self) -> typing.Optional[typing.Mapping[str, typing.Any]]:
if self.__trigger_metadata is None:
return None
if self._trigger_metadata_pyobj is None:
self._trigger_metadata_pyobj = {}
for k, v in self.__trigger_metadata.items():
self._trigger_metadata_pyobj[k] = v.value
return self._trigger_metadata_pyobj
def __repr__(self) -> str:
return (
f'<azure.KafkaEvent '
f'key={self.key} '
f'partition={self.offset} '
f'offset={self.offset} '
f'topic={self.topic} '
f'timestamp={self.timestamp} '
f'at 0x{id(self):0x}>'
)
class KafkaConverter(meta.InConverter, meta.OutConverter, binding='kafka'):
@classmethod
def check_input_type_annotation(cls, pytype) -> bool:
valid_types = (KafkaEvent)
return (
meta.is_iterable_type_annotation(pytype, valid_types)
or (isinstance(pytype, type) and issubclass(pytype, valid_types))
)
@classmethod
def check_output_type_annotation(cls, pytype) -> bool:
valid_types = (str, bytes)
return (
meta.is_iterable_type_annotation(pytype, str)
or (isinstance(pytype, type) and issubclass(pytype, valid_types))
)
@classmethod
def decode(
cls, data: meta.Datum, *, trigger_metadata
) -> typing.Union[KafkaEvent, typing.List[KafkaEvent]]:
data_type = data.type
if data_type in ['string', 'bytes', 'json']:
return cls.decode_single_event(data, trigger_metadata)
elif data_type in ['collection_bytes', 'collection_string']:
return cls.decode_multiple_events(data, trigger_metadata)
else:
raise NotImplementedError(
f'unsupported event data payload type: {data_type}')
@classmethod
def decode_single_event(cls, data: meta.Datum,
trigger_metadata) -> KafkaEvent:
data_type = data.type
if data_type in ['string', 'json']:
body = data.value.encode('utf-8')
elif data_type == 'bytes':
body = data.value
else:
raise NotImplementedError(
f'unsupported event data payload type: {data_type}')
return KafkaEvent(body=body)
@classmethod
def decode_multiple_events(cls, data: meta.Datum,
trigger_metadata) -> typing.List[KafkaEvent]:
parsed_data: List[bytes] = []
if data.type == 'collection_bytes':
parsed_data = data.value.bytes
elif data.type == 'collection_string':
parsed_data = [
d.encode('utf-8') for d in data.value.string
]
return [KafkaEvent(body=pd) for pd in parsed_data]
@classmethod
def encode(cls, obj: typing.Any, *,
expected_type: typing.Optional[type]) -> meta.Datum:
raise NotImplementedError('Output bindings are not '
'supported for Kafka')
class KafkaTriggerConverter(KafkaConverter,
binding='kafkaTrigger', trigger=True):
@classmethod
def decode(
cls, data: meta.Datum, *, trigger_metadata
) -> typing.Union[KafkaEvent, typing.List[KafkaEvent]]:
data_type = data.type
if data_type in ['string', 'bytes', 'json']:
return cls.decode_single_event(data, trigger_metadata)
elif data_type in ['collection_bytes', 'collection_string']:
return cls.decode_multiple_events(data, trigger_metadata)
else:
raise NotImplementedError(
f'unsupported event data payload type: {data_type}')
@classmethod
def decode_single_event(cls, data: meta.Datum,
trigger_metadata) -> KafkaEvent:
data_type = data.type
if data_type in ['string', 'json']:
body = data.value.encode('utf-8')
elif data_type == 'bytes':
body = data.value
else:
raise NotImplementedError(
f'unsupported event data payload type: {data_type}')
return KafkaEvent(
body=body,
timestamp=cls._decode_trigger_metadata_field(
trigger_metadata, 'Timestamp', python_type=str),
key=cls._decode_trigger_metadata_field(
trigger_metadata, 'Key', python_type=str),
partition=cls._decode_trigger_metadata_field(
trigger_metadata, 'Partition', python_type=int),
offset=cls._decode_trigger_metadata_field(
trigger_metadata, 'Offset', python_type=int),
topic=cls._decode_trigger_metadata_field(
trigger_metadata, 'Topic', python_type=str),
headers=cls._decode_trigger_metadata_field(
trigger_metadata, 'Headers', python_type=list),
trigger_metadata=trigger_metadata
)
@classmethod
def decode_multiple_events(cls, data: meta.Datum,
trigger_metadata) -> typing.List[KafkaEvent]:
parsed_data: List[bytes] = []
if data.type == 'collection_bytes':
parsed_data = data.value.bytes
elif data.type == 'collection_string':
parsed_data = [
d.encode('utf-8') for d in data.value.string
]
timestamp_props = trigger_metadata.get('TimestampArray')
key_props = trigger_metadata.get('KeyArray')
partition_props = trigger_metadata.get('PartitionArray')
offset_props = trigger_metadata.get('OffsetArray')
topic_props = trigger_metadata.get('TopicArray')
header_props = trigger_metadata.get('HeadersArray')
parsed_timestamp_props: List[Any] = cls.get_parsed_props(
timestamp_props, parsed_data)
parsed_key_props = cls.get_parsed_props(
key_props, parsed_data)
parsed_partition_props = cls.get_parsed_props(
partition_props, parsed_data)
parsed_offset_props: List[Any] = []
if offset_props is not None:
parsed_offset_props = [v for v in offset_props.value.sint64]
if len(parsed_offset_props) != len(parsed_data):
raise AssertionError(
'Number of bodies and metadata mismatched')
parsed_topic_props: List[Any]
if topic_props is not None:
parsed_topic_props = [v for v in topic_props.value.string]
parsed_headers_props: List[Any]
if header_props is not None:
parsed_headers_list = cls.get_parsed_props(header_props,
parsed_data)
parsed_headers_props = [v for v in parsed_headers_list]
events = []
for i in range(len(parsed_data)):
event = KafkaEvent(
body=parsed_data[i],
timestamp=parsed_timestamp_props[i],
key=cls._decode_typed_data(
parsed_key_props[i], python_type=str),
partition=parsed_partition_props[i],
offset=parsed_offset_props[i],
topic=parsed_topic_props[i],
headers=parsed_headers_props[i],
trigger_metadata=trigger_metadata
)
events.append(event)
return events
@classmethod
def encode(cls, obj: typing.Any, *,
expected_type: typing.Optional[type]) -> meta.Datum:
raise NotImplementedError('Output bindings are not '
'supported for Kafka')
@classmethod
def get_parsed_props(
cls, props: meta.Datum, parsed_data) -> List[Any]:
parsed_props: List[Any] = []
if props is not None:
parsed_props = json.loads(props.value)
if len(parsed_data) != len(parsed_props):
raise AssertionError('Number of bodies and metadata mismatched')
return parsed_props