@@ -246,7 +246,7 @@ def get_tau_sigma(
246
246
247
247
class Uniform (BoundedContinuous ):
248
248
r"""
249
- Continuous uniform log-likelihood .
249
+ Continuous uniform distribution .
250
250
251
251
The pdf of this distribution is
252
252
@@ -360,7 +360,7 @@ def rng_fn(cls, rng, size):
360
360
361
361
362
362
class Flat (Continuous ):
363
- """Uninformative log-likelihood that returns 0 regardless of the passed value."""
363
+ """Uninformative distribution that returns 0 regardless of the passed value."""
364
364
365
365
rv_op = flat
366
366
@@ -417,7 +417,7 @@ def logcdf(value):
417
417
418
418
class Normal (Continuous ):
419
419
r"""
420
- Univariate normal log-likelihood .
420
+ Univariate normal distribution .
421
421
422
422
The pdf of this distribution is
423
423
@@ -558,7 +558,7 @@ def rng_fn(
558
558
559
559
class TruncatedNormal (BoundedContinuous ):
560
560
r"""
561
- Univariate truncated normal log-likelihood .
561
+ Univariate truncated normal distribution .
562
562
563
563
The pdf of this distribution is
564
564
@@ -745,7 +745,7 @@ def truncated_normal_default_transform(op, rv):
745
745
746
746
class HalfNormal (PositiveContinuous ):
747
747
r"""
748
- Half-normal log-likelihood .
748
+ Half-normal distribution .
749
749
750
750
The pdf of this distribution is
751
751
@@ -875,7 +875,7 @@ def rng_fn(cls, rng, mu, lam, alpha, size) -> np.ndarray:
875
875
876
876
class Wald (PositiveContinuous ):
877
877
r"""
878
- Wald log-likelihood .
878
+ Wald distribution .
879
879
880
880
The pdf of this distribution is
881
881
@@ -1054,7 +1054,7 @@ def rng_fn(cls, rng, alpha, beta, size) -> np.ndarray:
1054
1054
1055
1055
class Beta (UnitContinuous ):
1056
1056
r"""
1057
- Beta log-likelihood .
1057
+ Beta distribution .
1058
1058
1059
1059
The pdf of this distribution is
1060
1060
@@ -1240,7 +1240,7 @@ def rv_op(cls, a, b, *, size=None, rng=None):
1240
1240
1241
1241
class Kumaraswamy (UnitContinuous ):
1242
1242
r"""
1243
- Kumaraswamy log-likelihood .
1243
+ Kumaraswamy distribution .
1244
1244
1245
1245
The pdf of this distribution is
1246
1246
@@ -1330,7 +1330,7 @@ def logcdf(value, a, b):
1330
1330
1331
1331
class Exponential (PositiveContinuous ):
1332
1332
r"""
1333
- Exponential log-likelihood .
1333
+ Exponential distribution .
1334
1334
1335
1335
The pdf of this distribution is
1336
1336
@@ -1424,7 +1424,7 @@ def icdf(value, mu):
1424
1424
1425
1425
class Laplace (Continuous ):
1426
1426
r"""
1427
- Laplace log-likelihood .
1427
+ Laplace distribution .
1428
1428
1429
1429
The pdf of this distribution is
1430
1430
@@ -1546,7 +1546,7 @@ def rv_op(cls, b, kappa, mu, *, size=None, rng=None):
1546
1546
1547
1547
class AsymmetricLaplace (Continuous ):
1548
1548
r"""
1549
- Asymmetric-Laplace log-likelihood .
1549
+ Asymmetric-Laplace distribution .
1550
1550
1551
1551
The pdf of this distribution is
1552
1552
@@ -1636,7 +1636,7 @@ def logp(value, b, kappa, mu):
1636
1636
1637
1637
class LogNormal (PositiveContinuous ):
1638
1638
r"""
1639
- Log-normal log-likelihood .
1639
+ Log-normal distribution .
1640
1640
1641
1641
Distribution of any random variable whose logarithm is normally
1642
1642
distributed. A variable might be modeled as log-normal if it can
@@ -1755,7 +1755,7 @@ def icdf(value, mu, sigma):
1755
1755
1756
1756
class StudentT (Continuous ):
1757
1757
r"""
1758
- Student's T log-likelihood .
1758
+ Student's T distribution .
1759
1759
1760
1760
Describes a normal variable whose precision is gamma distributed.
1761
1761
If only nu parameter is passed, this specifies a standard (central)
@@ -1901,7 +1901,7 @@ def rng_fn(cls, rng, a, b, mu, sigma, size=None) -> np.ndarray:
1901
1901
1902
1902
class SkewStudentT (Continuous ):
1903
1903
r"""
1904
- Skewed Student's T distribution log-likelihood .
1904
+ Skewed Student's T distribution distribution .
1905
1905
1906
1906
This follows Jones and Faddy (2003)
1907
1907
@@ -2016,7 +2016,7 @@ def icdf(value, a, b, mu, sigma):
2016
2016
2017
2017
class Pareto (BoundedContinuous ):
2018
2018
r"""
2019
- Pareto log-likelihood .
2019
+ Pareto distribution .
2020
2020
2021
2021
Often used to characterize wealth distribution, or other examples of the
2022
2022
80/20 rule.
@@ -2125,7 +2125,7 @@ def pareto_default_transform(op, rv):
2125
2125
2126
2126
class Cauchy (Continuous ):
2127
2127
r"""
2128
- Cauchy log-likelihood .
2128
+ Cauchy distribution .
2129
2129
2130
2130
Also known as the Lorentz or the Breit-Wigner distribution.
2131
2131
@@ -2213,7 +2213,7 @@ def icdf(value, alpha, beta):
2213
2213
2214
2214
class HalfCauchy (PositiveContinuous ):
2215
2215
r"""
2216
- Half-Cauchy log-likelihood .
2216
+ Half-Cauchy distribution .
2217
2217
2218
2218
The pdf of this distribution is
2219
2219
@@ -2297,7 +2297,7 @@ def icdf(value, loc, beta):
2297
2297
2298
2298
class Gamma (PositiveContinuous ):
2299
2299
r"""
2300
- Gamma log-likelihood .
2300
+ Gamma distribution .
2301
2301
2302
2302
Represents the sum of alpha exponentially distributed random variables,
2303
2303
each of which has rate beta.
@@ -2428,7 +2428,7 @@ def icdf(value, alpha, scale):
2428
2428
2429
2429
class InverseGamma (PositiveContinuous ):
2430
2430
r"""
2431
- Inverse gamma log-likelihood , the reciprocal of the gamma distribution.
2431
+ Inverse gamma distribution , the reciprocal of the gamma distribution.
2432
2432
2433
2433
The pdf of this distribution is
2434
2434
@@ -2544,7 +2544,7 @@ def logcdf(value, alpha, beta):
2544
2544
2545
2545
class ChiSquared :
2546
2546
r"""
2547
- :math:`\chi^2` log-likelihood .
2547
+ :math:`\chi^2` distribution .
2548
2548
2549
2549
This is the distribution from the sum of the squares of :math:`\nu` independent standard normal random variables or a special
2550
2550
case of the gamma distribution with :math:`\alpha = \nu/2` and :math:`\beta = 1/2`.
@@ -2620,7 +2620,7 @@ def rv_op(cls, alpha, beta, *, rng=None, size=None) -> np.ndarray:
2620
2620
2621
2621
class Weibull (PositiveContinuous ):
2622
2622
r"""
2623
- Weibull log-likelihood .
2623
+ Weibull distribution .
2624
2624
2625
2625
The pdf of this distribution is
2626
2626
@@ -2742,7 +2742,7 @@ def rv_op(cls, nu, sigma, *, size=None, rng=None) -> np.ndarray:
2742
2742
2743
2743
class HalfStudentT (PositiveContinuous ):
2744
2744
r"""
2745
- Half Student's T log-likelihood .
2745
+ Half Student's T distribution .
2746
2746
2747
2747
The pdf of this distribution is
2748
2748
@@ -2863,7 +2863,7 @@ def rv_op(cls, mu, sigma, nu, *, size=None, rng=None):
2863
2863
2864
2864
class ExGaussian (Continuous ):
2865
2865
r"""
2866
- Exponentially modified Gaussian log-likelihood .
2866
+ Exponentially modified Gaussian distribution .
2867
2867
2868
2868
Results from the convolution of a normal distribution with an exponential
2869
2869
distribution.
@@ -2986,7 +2986,7 @@ def logcdf(value, mu, sigma, nu):
2986
2986
2987
2987
class VonMises (CircularContinuous ):
2988
2988
r"""
2989
- Univariate VonMises log-likelihood .
2989
+ Univariate VonMises distribution .
2990
2990
2991
2991
The pdf of this distribution is
2992
2992
@@ -3072,7 +3072,7 @@ def rng_fn(cls, rng, mu, sigma, alpha, size=None) -> np.ndarray:
3072
3072
3073
3073
class SkewNormal (Continuous ):
3074
3074
r"""
3075
- Univariate skew-normal log-likelihood .
3075
+ Univariate skew-normal distribution .
3076
3076
3077
3077
The pdf of this distribution is
3078
3078
@@ -3167,7 +3167,7 @@ def logp(value, mu, sigma, alpha):
3167
3167
3168
3168
class Triangular (BoundedContinuous ):
3169
3169
r"""
3170
- Continuous Triangular log-likelihood .
3170
+ Continuous Triangular distribution .
3171
3171
3172
3172
The pdf of this distribution is
3173
3173
@@ -3296,7 +3296,7 @@ def triangular_default_transform(op, rv):
3296
3296
3297
3297
class Gumbel (Continuous ):
3298
3298
r"""
3299
- Univariate right-skewed Gumbel log-likelihood .
3299
+ Univariate right-skewed Gumbel distribution .
3300
3300
3301
3301
This distribution is typically used for modeling maximum (or extreme) values.
3302
3302
Those looking to find the extreme minimum provided by the left-skewed Gumbel should
@@ -3523,7 +3523,7 @@ def logp(value, b, sigma):
3523
3523
3524
3524
class Logistic (Continuous ):
3525
3525
r"""
3526
- Logistic log-likelihood .
3526
+ Logistic distribution .
3527
3527
3528
3528
The pdf of this distribution is
3529
3529
@@ -3631,7 +3631,7 @@ def rv_op(cls, mu, sigma, *, size=None, rng=None):
3631
3631
3632
3632
class LogitNormal (UnitContinuous ):
3633
3633
r"""
3634
- Logit-Normal log-likelihood .
3634
+ Logit-Normal distribution .
3635
3635
3636
3636
The pdf of this distribution is
3637
3637
@@ -3876,7 +3876,7 @@ def rng_fn(cls, rng, mu, sigma, size=None) -> np.ndarray:
3876
3876
3877
3877
class Moyal (Continuous ):
3878
3878
r"""
3879
- Moyal log-likelihood .
3879
+ Moyal distribution .
3880
3880
3881
3881
The pdf of this distribution is
3882
3882
0 commit comments