Skip to content

Commit af81955

Browse files
authored
Replaced "log-likelihood" with "distribution" in for all the classes where distributions is more appropriate rather than log-likelihood. (pymc-devs#7573)
* Update multivariate.py Updated the docstrings for better clarity. Replaced "log-likelihood" with "distribution" to accurately describe the functionality, as the class provides more than just log-likelihood, including cdf, mean, and random methods. * Update multivariate.py Updated the docstrings for better clarity. Replaced "log-likelihood" with "distribution" to accurately describe the functionality, as the class provides more than just log-likelihood, including mean, variance, covariance. * Update continuous.py Updated the docstrings for better clarity. Replaced "log-likelihood" with "distribution" to accurately describe the functionality, as the class provides more than just log-likelihood, including mean, variance, covariance, etc. * Update discrete.py Updated the docstrings for better clarity. Replaced "log-likelihood" with "distribution" to accurately describe the functionality, as the class provides more than just log-likelihood, including mean, variance, covariance. * Update distribution.py Updated the docstrings for better clarity. Replaced "log-likelihood" with "distribution" to accurately describe the functionality, as the class provides more than just log-likelihood including log-cdf, log-pdf. * Update mixture.py Updated the docstrings for better clarity. Replaced "log-likelihood" with "distribution" to accurately describe the functionality, as the class provides more than just log-likelihood, including mean, variance and covariance. * Update timeseries.py Updated the docstrings for better clarity. Replaced "log-likelihood" with "distribution" to accurately describe the functionality.
1 parent f9057f4 commit af81955

File tree

6 files changed

+60
-60
lines changed

6 files changed

+60
-60
lines changed

pymc/distributions/continuous.py

Lines changed: 30 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -246,7 +246,7 @@ def get_tau_sigma(
246246

247247
class Uniform(BoundedContinuous):
248248
r"""
249-
Continuous uniform log-likelihood.
249+
Continuous uniform distribution.
250250
251251
The pdf of this distribution is
252252
@@ -360,7 +360,7 @@ def rng_fn(cls, rng, size):
360360

361361

362362
class Flat(Continuous):
363-
"""Uninformative log-likelihood that returns 0 regardless of the passed value."""
363+
"""Uninformative distribution that returns 0 regardless of the passed value."""
364364

365365
rv_op = flat
366366

@@ -417,7 +417,7 @@ def logcdf(value):
417417

418418
class Normal(Continuous):
419419
r"""
420-
Univariate normal log-likelihood.
420+
Univariate normal distribution.
421421
422422
The pdf of this distribution is
423423
@@ -558,7 +558,7 @@ def rng_fn(
558558

559559
class TruncatedNormal(BoundedContinuous):
560560
r"""
561-
Univariate truncated normal log-likelihood.
561+
Univariate truncated normal distribution.
562562
563563
The pdf of this distribution is
564564
@@ -745,7 +745,7 @@ def truncated_normal_default_transform(op, rv):
745745

746746
class HalfNormal(PositiveContinuous):
747747
r"""
748-
Half-normal log-likelihood.
748+
Half-normal distribution.
749749
750750
The pdf of this distribution is
751751
@@ -875,7 +875,7 @@ def rng_fn(cls, rng, mu, lam, alpha, size) -> np.ndarray:
875875

876876
class Wald(PositiveContinuous):
877877
r"""
878-
Wald log-likelihood.
878+
Wald distribution.
879879
880880
The pdf of this distribution is
881881
@@ -1054,7 +1054,7 @@ def rng_fn(cls, rng, alpha, beta, size) -> np.ndarray:
10541054

10551055
class Beta(UnitContinuous):
10561056
r"""
1057-
Beta log-likelihood.
1057+
Beta distribution.
10581058
10591059
The pdf of this distribution is
10601060
@@ -1240,7 +1240,7 @@ def rv_op(cls, a, b, *, size=None, rng=None):
12401240

12411241
class Kumaraswamy(UnitContinuous):
12421242
r"""
1243-
Kumaraswamy log-likelihood.
1243+
Kumaraswamy distribution.
12441244
12451245
The pdf of this distribution is
12461246
@@ -1330,7 +1330,7 @@ def logcdf(value, a, b):
13301330

13311331
class Exponential(PositiveContinuous):
13321332
r"""
1333-
Exponential log-likelihood.
1333+
Exponential distribution.
13341334
13351335
The pdf of this distribution is
13361336
@@ -1424,7 +1424,7 @@ def icdf(value, mu):
14241424

14251425
class Laplace(Continuous):
14261426
r"""
1427-
Laplace log-likelihood.
1427+
Laplace distribution.
14281428
14291429
The pdf of this distribution is
14301430
@@ -1546,7 +1546,7 @@ def rv_op(cls, b, kappa, mu, *, size=None, rng=None):
15461546

15471547
class AsymmetricLaplace(Continuous):
15481548
r"""
1549-
Asymmetric-Laplace log-likelihood.
1549+
Asymmetric-Laplace distribution.
15501550
15511551
The pdf of this distribution is
15521552
@@ -1636,7 +1636,7 @@ def logp(value, b, kappa, mu):
16361636

16371637
class LogNormal(PositiveContinuous):
16381638
r"""
1639-
Log-normal log-likelihood.
1639+
Log-normal distribution.
16401640
16411641
Distribution of any random variable whose logarithm is normally
16421642
distributed. A variable might be modeled as log-normal if it can
@@ -1755,7 +1755,7 @@ def icdf(value, mu, sigma):
17551755

17561756
class StudentT(Continuous):
17571757
r"""
1758-
Student's T log-likelihood.
1758+
Student's T distribution.
17591759
17601760
Describes a normal variable whose precision is gamma distributed.
17611761
If only nu parameter is passed, this specifies a standard (central)
@@ -1901,7 +1901,7 @@ def rng_fn(cls, rng, a, b, mu, sigma, size=None) -> np.ndarray:
19011901

19021902
class SkewStudentT(Continuous):
19031903
r"""
1904-
Skewed Student's T distribution log-likelihood.
1904+
Skewed Student's T distribution distribution.
19051905
19061906
This follows Jones and Faddy (2003)
19071907
@@ -2016,7 +2016,7 @@ def icdf(value, a, b, mu, sigma):
20162016

20172017
class Pareto(BoundedContinuous):
20182018
r"""
2019-
Pareto log-likelihood.
2019+
Pareto distribution.
20202020
20212021
Often used to characterize wealth distribution, or other examples of the
20222022
80/20 rule.
@@ -2125,7 +2125,7 @@ def pareto_default_transform(op, rv):
21252125

21262126
class Cauchy(Continuous):
21272127
r"""
2128-
Cauchy log-likelihood.
2128+
Cauchy distribution.
21292129
21302130
Also known as the Lorentz or the Breit-Wigner distribution.
21312131
@@ -2213,7 +2213,7 @@ def icdf(value, alpha, beta):
22132213

22142214
class HalfCauchy(PositiveContinuous):
22152215
r"""
2216-
Half-Cauchy log-likelihood.
2216+
Half-Cauchy distribution.
22172217
22182218
The pdf of this distribution is
22192219
@@ -2297,7 +2297,7 @@ def icdf(value, loc, beta):
22972297

22982298
class Gamma(PositiveContinuous):
22992299
r"""
2300-
Gamma log-likelihood.
2300+
Gamma distribution.
23012301
23022302
Represents the sum of alpha exponentially distributed random variables,
23032303
each of which has rate beta.
@@ -2428,7 +2428,7 @@ def icdf(value, alpha, scale):
24282428

24292429
class InverseGamma(PositiveContinuous):
24302430
r"""
2431-
Inverse gamma log-likelihood, the reciprocal of the gamma distribution.
2431+
Inverse gamma distribution, the reciprocal of the gamma distribution.
24322432
24332433
The pdf of this distribution is
24342434
@@ -2544,7 +2544,7 @@ def logcdf(value, alpha, beta):
25442544

25452545
class ChiSquared:
25462546
r"""
2547-
:math:`\chi^2` log-likelihood.
2547+
:math:`\chi^2` distribution.
25482548
25492549
This is the distribution from the sum of the squares of :math:`\nu` independent standard normal random variables or a special
25502550
case of the gamma distribution with :math:`\alpha = \nu/2` and :math:`\beta = 1/2`.
@@ -2620,7 +2620,7 @@ def rv_op(cls, alpha, beta, *, rng=None, size=None) -> np.ndarray:
26202620

26212621
class Weibull(PositiveContinuous):
26222622
r"""
2623-
Weibull log-likelihood.
2623+
Weibull distribution.
26242624
26252625
The pdf of this distribution is
26262626
@@ -2742,7 +2742,7 @@ def rv_op(cls, nu, sigma, *, size=None, rng=None) -> np.ndarray:
27422742

27432743
class HalfStudentT(PositiveContinuous):
27442744
r"""
2745-
Half Student's T log-likelihood.
2745+
Half Student's T distribution.
27462746
27472747
The pdf of this distribution is
27482748
@@ -2863,7 +2863,7 @@ def rv_op(cls, mu, sigma, nu, *, size=None, rng=None):
28632863

28642864
class ExGaussian(Continuous):
28652865
r"""
2866-
Exponentially modified Gaussian log-likelihood.
2866+
Exponentially modified Gaussian distribution.
28672867
28682868
Results from the convolution of a normal distribution with an exponential
28692869
distribution.
@@ -2986,7 +2986,7 @@ def logcdf(value, mu, sigma, nu):
29862986

29872987
class VonMises(CircularContinuous):
29882988
r"""
2989-
Univariate VonMises log-likelihood.
2989+
Univariate VonMises distribution.
29902990
29912991
The pdf of this distribution is
29922992
@@ -3072,7 +3072,7 @@ def rng_fn(cls, rng, mu, sigma, alpha, size=None) -> np.ndarray:
30723072

30733073
class SkewNormal(Continuous):
30743074
r"""
3075-
Univariate skew-normal log-likelihood.
3075+
Univariate skew-normal distribution.
30763076
30773077
The pdf of this distribution is
30783078
@@ -3167,7 +3167,7 @@ def logp(value, mu, sigma, alpha):
31673167

31683168
class Triangular(BoundedContinuous):
31693169
r"""
3170-
Continuous Triangular log-likelihood.
3170+
Continuous Triangular distribution.
31713171
31723172
The pdf of this distribution is
31733173
@@ -3296,7 +3296,7 @@ def triangular_default_transform(op, rv):
32963296

32973297
class Gumbel(Continuous):
32983298
r"""
3299-
Univariate right-skewed Gumbel log-likelihood.
3299+
Univariate right-skewed Gumbel distribution.
33003300
33013301
This distribution is typically used for modeling maximum (or extreme) values.
33023302
Those looking to find the extreme minimum provided by the left-skewed Gumbel should
@@ -3523,7 +3523,7 @@ def logp(value, b, sigma):
35233523

35243524
class Logistic(Continuous):
35253525
r"""
3526-
Logistic log-likelihood.
3526+
Logistic distribution.
35273527
35283528
The pdf of this distribution is
35293529
@@ -3631,7 +3631,7 @@ def rv_op(cls, mu, sigma, *, size=None, rng=None):
36313631

36323632
class LogitNormal(UnitContinuous):
36333633
r"""
3634-
Logit-Normal log-likelihood.
3634+
Logit-Normal distribution.
36353635
36363636
The pdf of this distribution is
36373637
@@ -3876,7 +3876,7 @@ def rng_fn(cls, rng, mu, sigma, size=None) -> np.ndarray:
38763876

38773877
class Moyal(Continuous):
38783878
r"""
3879-
Moyal log-likelihood.
3879+
Moyal distribution.
38803880
38813881
The pdf of this distribution is
38823882

pymc/distributions/discrete.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@
7171

7272
class Binomial(Discrete):
7373
R"""
74-
Binomial log-likelihood.
74+
Binomial distribution.
7575
7676
The discrete probability distribution of the number of successes
7777
in a sequence of n independent yes/no experiments, each of which
@@ -176,7 +176,7 @@ def logcdf(value, n, p):
176176

177177
class BetaBinomial(Discrete):
178178
R"""
179-
Beta-binomial log-likelihood.
179+
Beta-binomial distribution.
180180
181181
Equivalent to binomial random variable with success probability
182182
drawn from a beta distribution.
@@ -293,7 +293,7 @@ def logcdf(value, n, alpha, beta):
293293

294294

295295
class Bernoulli(Discrete):
296-
R"""Bernoulli log-likelihood.
296+
R"""Bernoulli distribution.
297297
298298
The Bernoulli distribution describes the probability of successes
299299
(x=1) and failures (x=0).
@@ -413,7 +413,7 @@ def rv_op(cls, q, beta, *, size=None, rng=None):
413413

414414

415415
class DiscreteWeibull(Discrete):
416-
R"""Discrete Weibull log-likelihood.
416+
R"""Discrete Weibull distribution.
417417
418418
The discrete Weibull distribution is a flexible model of count data that
419419
can handle both over- and under-dispersion.
@@ -506,7 +506,7 @@ def logcdf(value, q, beta):
506506

507507
class Poisson(Discrete):
508508
R"""
509-
Poisson log-likelihood.
509+
Poisson distribution.
510510
511511
Often used to model the number of events occurring in a fixed period
512512
of time when the times at which events occur are independent.
@@ -602,7 +602,7 @@ def logcdf(value, mu):
602602

603603
class NegativeBinomial(Discrete):
604604
R"""
605-
Negative binomial log-likelihood.
605+
Negative binomial distribution.
606606
607607
The negative binomial distribution describes a Poisson random variable
608608
whose rate parameter is gamma distributed.
@@ -750,7 +750,7 @@ def logcdf(value, n, p):
750750

751751
class Geometric(Discrete):
752752
R"""
753-
Geometric log-likelihood.
753+
Geometric distribution.
754754
755755
The probability that the first success in a sequence of Bernoulli
756756
trials occurs on the x'th trial.
@@ -1084,7 +1084,7 @@ def icdf(value, lower, upper):
10841084

10851085
class Categorical(Discrete):
10861086
R"""
1087-
Categorical log-likelihood.
1087+
Categorical distribution.
10881088
10891089
The most general discrete distribution. The pmf of this distribution is
10901090

pymc/distributions/distribution.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -664,7 +664,7 @@ def rv_op(cls, c, *, size=None, rng=None):
664664

665665
class DiracDelta(Discrete):
666666
r"""
667-
DiracDelta log-likelihood.
667+
DiracDelta distribution.
668668
669669
Parameters
670670
----------

0 commit comments

Comments
 (0)