-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathgodmode.cpp
272 lines (226 loc) · 6.98 KB
/
godmode.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#include <ArduinoUnitTests.h>
#include <Arduino.h>
#include "fibonacciClock.h"
GodmodeState* state = GODMODE();
unittest_setup() {
resetFibClock();
state->reset();
}
unittest(millis_micros_and_delay) {
assertEqual(0, millis());
assertEqual(0, micros());
delay(3);
assertEqual(3, millis());
assertEqual(3000, micros());
delayMicroseconds(11000);
assertEqual(14, millis());
assertEqual(14000, micros());
}
unittest(random) {
randomSeed(1);
assertEqual(state->seed, 1);
unsigned long x;
x = random(4294967293);
assertEqual(4294967292, x);
assertEqual(state->seed, 4294967292);
x = random(50, 100);
assertEqual(87, x);
assertEqual(state->seed, 4294967287);
x = random(100);
assertEqual(82, x);
assertEqual(state->seed, 4294967282);
}
unittest(pins) {
pinMode(1, OUTPUT); // this is a no-op in unit tests. it's just here to prove compilation
digitalWrite(1, HIGH);
assertEqual(HIGH, state->digitalPin[1]);
assertEqual(HIGH, digitalRead(1));
digitalWrite(1, LOW);
assertEqual(LOW, state->digitalPin[1]);
assertEqual(LOW, digitalRead(1));
pinMode(1, INPUT);
state->digitalPin[1] = HIGH;
assertEqual(HIGH, digitalRead(1));
state->digitalPin[1] = LOW;
assertEqual(LOW, digitalRead(1));
analogWrite(1, 37);
assertEqual(37, state->analogPin[1]);
analogWrite(1, 22);
assertEqual(22, state->analogPin[1]);
state->analogPin[1] = 99;
assertEqual(99, analogRead(1));
state->analogPin[1] = 56;
assertEqual(56, analogRead(1));
}
unittest(pin_read_history) {
int future[6] = {33, 22, 55, 11, 44, 66};
state->analogPin[1].fromArray(future, 6);
for (int i = 0; i < 6; ++i)
{
assertEqual(future[i], analogRead(1));
}
// assert end of history works
assertEqual(future[5], analogRead(1));
state->digitalPin[1].fromAscii("Yo", true);
// digitial history as serial data, big-endian
bool binaryAscii[16] = {
0, 1, 0, 1, 1, 0, 0, 1,
0, 1, 1, 0, 1, 1, 1, 1
};
for (int i = 0; i < 16; ++i) {
assertEqual(binaryAscii[i], digitalRead(1));
}
}
unittest(digital_pin_write_history_with_timing) {
int numMoved;
bool expectedD[6] = {LOW, HIGH, LOW, LOW, HIGH, HIGH};
bool actualD[6];
unsigned long expectedT[6] = {0, 1, 1, 2, 3, 5};
unsigned long actualT[6];
// history for digital pin. start from 1 since LOW is the initial value
for (int i = 1; i < 6; ++i) {
state->micros = fibMicros();
digitalWrite(1, expectedD[i]);
}
assertEqual(6, state->digitalPin[1].historySize());
numMoved = state->digitalPin[1].toArray(actualD, 6);
assertEqual(6, numMoved);
// assert non-destructive
numMoved = state->digitalPin[1].toArray(actualD, 6);
assertEqual(6, numMoved);
for (int i = 0; i < 6; ++i)
{
assertEqual(expectedD[i], actualD[i]);
}
numMoved = state->digitalPin[1].toTimestampArray(actualT, 6);
assertEqual(6, numMoved);
for (int i = 0; i < numMoved; ++i)
{
assertEqual(expectedT[i], actualT[i]);
}
}
unittest(analog_pin_write_history) {
int numMoved;
int expectedA[6] = {0, 11, 22, 33, 44, 55};
int actualA[6];
// history for analog pin
analogWrite(1, 11);
analogWrite(1, 22);
analogWrite(1, 33);
analogWrite(1, 44);
analogWrite(1, 55);
assertEqual(6, state->analogPin[1].historySize());
numMoved = state->analogPin[1].toArray(actualA, 6);
assertEqual(6, numMoved);
// assert non-destructive
numMoved = state->analogPin[1].toArray(actualA, 6);
assertEqual(6, numMoved);
for (int i = 0; i < 6; ++i)
{
assertEqual(expectedA[i], actualA[i]);
}
}
unittest(ascii_pin_write_history) {
// digitial history as serial data, big-endian
bool binaryAscii[24] = {
0, 1, 0, 1, 1, 0, 0, 1,
0, 1, 1, 0, 0, 1, 0, 1,
0, 1, 1, 1, 0, 0, 1, 1};
for (int i = 0; i < 24; digitalWrite(2, binaryAscii[i++]))
;
assertEqual("Yes", state->digitalPin[2].toAscii(1, true));
// digitial history as serial data, little-endian
bool binaryAscii2[16] = {
0, 1, 1, 1, 0, 0, 1, 0,
1, 1, 1, 1, 0, 1, 1, 0};
for (int i = 0; i < 16; digitalWrite(3, binaryAscii2[i++]))
;
assertEqual("No", state->digitalPin[3].toAscii(1, false));
}
unittest(spi) {
assertEqual("", state->spi.dataIn);
assertEqual("", state->spi.dataOut);
// 8-bit
state->reset();
state->spi.dataIn = "LMNO";
uint8_t out8 = SPI.transfer('a');
assertEqual("a", state->spi.dataOut);
assertEqual('L', out8);
assertEqual("MNO", state->spi.dataIn);
// 16-bit
union { uint16_t val; struct { char lsb; char msb; }; } in16, out16;
state->reset();
state->spi.dataIn = "LMNO";
in16.lsb = 'a';
in16.msb = 'b';
out16.val = SPI.transfer16(in16.val);
assertEqual("NO", state->spi.dataIn);
assertEqual('L', out16.lsb);
assertEqual('M', out16.msb);
assertEqual("ab", state->spi.dataOut);
// buffer
state->reset();
state->spi.dataIn = "LMNOP";
char inBuf[6] = "abcde";
SPI.transfer(inBuf, 4);
assertEqual("abcd", state->spi.dataOut);
assertEqual("LMNOe", String(inBuf));
}
#ifdef HAVE_HWSERIAL0
void smartLightswitchSerialHandler(int pin) {
if (Serial.available() > 0) {
int incomingByte = Serial.read();
int val = incomingByte == '0' ? LOW : HIGH;
Serial.print("Ack ");
digitalWrite(pin, val);
Serial.print(String(pin));
Serial.print(" ");
Serial.print((char)incomingByte);
}
}
unittest(does_nothing_if_no_data) {
int myPin = 3;
state->serialPort[0].dataIn = "";
state->serialPort[0].dataOut = "";
state->digitalPin[myPin] = LOW;
smartLightswitchSerialHandler(myPin);
assertEqual(LOW, state->digitalPin[myPin]);
assertEqual("", state->serialPort[0].dataOut);
}
unittest(keeps_pin_low_and_acks) {
int myPin = 3;
state->serialPort[0].dataIn = "0";
state->serialPort[0].dataOut = "";
state->digitalPin[myPin] = LOW;
smartLightswitchSerialHandler(myPin);
assertEqual(LOW, state->digitalPin[myPin]);
assertEqual("", state->serialPort[0].dataIn);
assertEqual("Ack 3 0", state->serialPort[0].dataOut);
}
unittest(flips_pin_high_and_acks) {
int myPin = 3;
state->serialPort[0].dataIn = "1";
state->serialPort[0].dataOut = "";
state->digitalPin[myPin] = LOW;
smartLightswitchSerialHandler(myPin);
assertEqual(HIGH, state->digitalPin[myPin]);
assertEqual("", state->serialPort[0].dataIn);
assertEqual("Ack 3 1", state->serialPort[0].dataOut);
}
unittest(two_flips) {
int myPin = 3;
state->serialPort[0].dataIn = "10junk";
state->serialPort[0].dataOut = "";
state->digitalPin[myPin] = LOW;
smartLightswitchSerialHandler(myPin);
assertEqual(HIGH, state->digitalPin[myPin]);
assertEqual("0junk", state->serialPort[0].dataIn);
assertEqual("Ack 3 1", state->serialPort[0].dataOut);
state->serialPort[0].dataOut = "";
smartLightswitchSerialHandler(myPin);
assertEqual(LOW, state->digitalPin[myPin]);
assertEqual("junk", state->serialPort[0].dataIn);
assertEqual("Ack 3 0", state->serialPort[0].dataOut);
}
#endif
unittest_main()