|
5 | 5 | import java.util.Iterator;
|
6 | 6 | import java.util.Set;
|
7 | 7 |
|
8 |
| -/**349. Intersection of Two Arrays |
| 8 | +/** |
| 9 | + * 349. Intersection of Two Arrays |
9 | 10 | *
|
10 |
| -Given two arrays, write a function to compute their intersection. |
11 |
| -
|
12 |
| -Example: |
13 |
| -Given nums1 = [1, 2, 2, 1], nums2 = [2, 2], return [2]. |
14 |
| -
|
15 |
| -Note: |
16 |
| -Each element in the result must be unique. |
17 |
| -The result can be in any order.*/ |
| 11 | + * Given two arrays, write a function to compute their intersection. |
| 12 | + * |
| 13 | + * Example: Given nums1 = [1, 2, 2, 1], nums2 = [2, 2], return [2]. |
| 14 | + * |
| 15 | + * Note: Each element in the result must be unique. The result can be in any order. |
| 16 | + */ |
18 | 17 | public class _349 {
|
19 | 18 |
|
20 |
| - //then I clicked its Tags, and find it's marked with so many tags: Binary Search, HashTable, Two Pointers, Sort, now I'll try to do it one by one |
21 |
| - //inspired by this post: https://discuss.leetcode.com/topic/45685/three-java-solutions |
22 |
| - public int[] intersection_two_pointers(int[] nums1, int[] nums2) { |
23 |
| - Set<Integer> set = new HashSet(); |
24 |
| - Arrays.sort(nums1); |
25 |
| - Arrays.sort(nums2); |
26 |
| - int i = 0; |
27 |
| - int j = 0; |
28 |
| - for (; i < nums1.length && j < nums2.length; ) { |
29 |
| - if (nums1[i] < nums2[j]) { |
30 |
| - i++; |
31 |
| - } else if (nums1[i] > nums2[j]) { |
32 |
| - j++; |
33 |
| - } else { |
34 |
| - set.add(nums1[i]); |
35 |
| - i++; |
36 |
| - j++; |
37 |
| - } |
38 |
| - } |
39 |
| - int[] result = new int[set.size()]; |
40 |
| - Iterator<Integer> it = set.iterator(); |
41 |
| - int k = 0; |
42 |
| - while (it.hasNext()) { |
43 |
| - result[k++] = it.next(); |
44 |
| - } |
45 |
| - return result; |
46 |
| - } |
47 |
| - |
48 |
| - public int[] intersection_binary_search(int[] nums1, int[] nums2) { |
49 |
| - //this approach is O(nlgn) |
50 |
| - Arrays.sort(nums1); |
51 |
| - Arrays.sort(nums2); |
52 |
| - Set<Integer> intersect = new HashSet(); |
53 |
| - for (int i : nums1) { |
54 |
| - if (binarySearch(i, nums2)) { |
55 |
| - intersect.add(i); |
56 |
| - } |
57 |
| - } |
58 |
| - int[] result = new int[intersect.size()]; |
59 |
| - Iterator<Integer> it = intersect.iterator(); |
60 |
| - for (int i = 0; i < intersect.size(); i++) { |
61 |
| - result[i] = it.next(); |
62 |
| - } |
63 |
| - return result; |
64 |
| - } |
65 |
| - |
66 |
| - private boolean binarySearch(int i, int[] nums) { |
67 |
| - int left = 0; |
68 |
| - int right = nums.length - 1; |
69 |
| - while (left <= right) { |
70 |
| - int mid = left + (right - left) / 2; |
71 |
| - if (nums[mid] == i) { |
72 |
| - return true; |
73 |
| - } else if (nums[mid] > i) { |
74 |
| - right = mid - 1; |
75 |
| - } else { |
76 |
| - left = mid + 1; |
77 |
| - } |
78 |
| - } |
79 |
| - return false; |
80 |
| - } |
81 |
| - |
82 |
| - //tried a friend's recommended approach, didn't finish it to get it AC'ed, turned to normal approach as above and got it AC'ed. |
83 |
| - private boolean binarySearch_not_working_version(int i, int[] nums) { |
84 |
| - if (nums == null || nums.length == 0) { |
85 |
| - return false; |
86 |
| - } |
87 |
| - int left = 0; |
88 |
| - int right = nums.length - 1; |
89 |
| - while (left + 1 < right) { |
90 |
| - int mid = left + (right - left) / 2; |
91 |
| - if (nums[mid] > i) { |
92 |
| - right = mid; |
93 |
| - } else if (nums[mid] < 1) { |
94 |
| - left = mid; |
95 |
| - } else if (nums[mid] == i) { |
96 |
| - return true; |
97 |
| - } else { |
98 |
| - return false; |
99 |
| - } |
100 |
| - } |
101 |
| - return nums[left] == i || nums[right] == i; |
102 |
| - } |
103 |
| - |
104 |
| - public static void main(String... strings) { |
105 |
| - _349 test = new _349(); |
106 |
| - int[] nums1 = new int[]{1, 2}; |
107 |
| - int[] nums2 = new int[]{2, 1}; |
108 |
| - test.intersection_binary_search(nums1, nums2); |
109 |
| - } |
110 |
| - |
111 |
| - public int[] intersection_two_hashsets(int[] nums1, int[] nums2) { |
112 |
| - //this approach is O(n) |
113 |
| - Set<Integer> set1 = new HashSet(); |
114 |
| - for (int i = 0; i < nums1.length; i++) { |
115 |
| - set1.add(nums1[i]); |
116 |
| - } |
117 |
| - Set<Integer> intersect = new HashSet(); |
118 |
| - for (int i = 0; i < nums2.length; i++) { |
119 |
| - if (set1.contains(nums2[i])) { |
120 |
| - intersect.add(nums2[i]); |
121 |
| - } |
122 |
| - } |
123 |
| - int[] result = new int[intersect.size()]; |
124 |
| - Iterator<Integer> it = intersect.iterator(); |
125 |
| - for (int i = 0; i < intersect.size(); i++) { |
126 |
| - result[i] = it.next(); |
127 |
| - } |
128 |
| - return result; |
129 |
| - } |
| 19 | + public static class Solution1 { |
| 20 | + public int[] intersection(int[] nums1, int[] nums2) { |
| 21 | + Set<Integer> set = new HashSet(); |
| 22 | + Arrays.sort(nums1); |
| 23 | + Arrays.sort(nums2); |
| 24 | + int i = 0; |
| 25 | + int j = 0; |
| 26 | + for (; i < nums1.length && j < nums2.length; ) { |
| 27 | + if (nums1[i] < nums2[j]) { |
| 28 | + i++; |
| 29 | + } else if (nums1[i] > nums2[j]) { |
| 30 | + j++; |
| 31 | + } else { |
| 32 | + set.add(nums1[i]); |
| 33 | + i++; |
| 34 | + j++; |
| 35 | + } |
| 36 | + } |
| 37 | + int[] result = new int[set.size()]; |
| 38 | + Iterator<Integer> it = set.iterator(); |
| 39 | + int k = 0; |
| 40 | + while (it.hasNext()) { |
| 41 | + result[k++] = it.next(); |
| 42 | + } |
| 43 | + return result; |
| 44 | + } |
| 45 | + } |
130 | 46 |
|
131 |
| - //so naturally, I come up with this naive O(n^2) solution and surprisingly it got AC'ed immediately, no wonder it's marked as EASY. |
132 |
| - public int[] intersection_naive(int[] nums1, int[] nums2) { |
133 |
| - Set<Integer> set = new HashSet(); |
134 |
| - for (int i = 0; i < nums1.length; i++) { |
135 |
| - for (int j = 0; j < nums2.length; j++) { |
136 |
| - if (nums1[i] == nums2[j]) { |
137 |
| - set.add(nums1[i]); |
138 |
| - } |
139 |
| - } |
140 |
| - } |
141 |
| - int[] result = new int[set.size()]; |
142 |
| - Iterator<Integer> it = set.iterator(); |
143 |
| - int i = 0; |
144 |
| - while (it.hasNext()) { |
145 |
| - result[i++] = it.next(); |
146 |
| - } |
147 |
| - return result; |
148 |
| - } |
| 47 | + public static class Solution2 { |
| 48 | + public int[] intersection(int[] nums1, int[] nums2) { |
| 49 | + //this approach is O(nlgn) |
| 50 | + Arrays.sort(nums1); |
| 51 | + Arrays.sort(nums2); |
| 52 | + Set<Integer> intersect = new HashSet(); |
| 53 | + for (int i : nums1) { |
| 54 | + if (binarySearch(i, nums2)) { |
| 55 | + intersect.add(i); |
| 56 | + } |
| 57 | + } |
| 58 | + int[] result = new int[intersect.size()]; |
| 59 | + Iterator<Integer> it = intersect.iterator(); |
| 60 | + for (int i = 0; i < intersect.size(); i++) { |
| 61 | + result[i] = it.next(); |
| 62 | + } |
| 63 | + return result; |
| 64 | + } |
149 | 65 |
|
| 66 | + private boolean binarySearch(int i, int[] nums) { |
| 67 | + int left = 0; |
| 68 | + int right = nums.length - 1; |
| 69 | + while (left <= right) { |
| 70 | + int mid = left + (right - left) / 2; |
| 71 | + if (nums[mid] == i) { |
| 72 | + return true; |
| 73 | + } else if (nums[mid] > i) { |
| 74 | + right = mid - 1; |
| 75 | + } else { |
| 76 | + left = mid + 1; |
| 77 | + } |
| 78 | + } |
| 79 | + return false; |
| 80 | + } |
| 81 | + } |
150 | 82 | }
|
0 commit comments