25
25
import pandas .util .testing as tm
26
26
import pandas .util ._test_decorators as td
27
27
28
+
28
29
class TestSeriesAnalytics ():
29
30
30
31
@pytest .mark .parametrize ("use_bottleneck" , [True , False ])
@@ -394,7 +395,8 @@ def test_cumprod(self, datetime_series):
394
395
395
396
def test_cummin (self , datetime_series ):
396
397
tm .assert_numpy_array_equal (datetime_series .cummin ().values ,
397
- np .minimum .accumulate (np .array (datetime_series )))
398
+ np .minimum .accumulate (
399
+ np .array (datetime_series )))
398
400
ts = datetime_series .copy ()
399
401
ts [::2 ] = np .NaN
400
402
result = ts .cummin ()[1 ::2 ]
@@ -404,7 +406,8 @@ def test_cummin(self, datetime_series):
404
406
405
407
def test_cummax (self , datetime_series ):
406
408
tm .assert_numpy_array_equal (datetime_series .cummax ().values ,
407
- np .maximum .accumulate (np .array (datetime_series )))
409
+ np .maximum .accumulate (
410
+ np .array (datetime_series )))
408
411
ts = datetime_series .copy ()
409
412
ts [::2 ] = np .NaN
410
413
result = ts .cummax ()[1 ::2 ]
@@ -504,8 +507,8 @@ def test_npdiff(self):
504
507
r = np .diff (s )
505
508
assert_series_equal (Series ([nan , 0 , 0 , 0 , nan ]), r )
506
509
507
- def _check_stat_op (self , name , alternate , string_series_ , check_objects = False ,
508
- check_allna = False ):
510
+ def _check_stat_op (self , name , alternate , string_series_ ,
511
+ check_objects = False , check_allna = False ):
509
512
510
513
with pd .option_context ('use_bottleneck' , False ):
511
514
f = getattr (Series , name )
@@ -722,9 +725,11 @@ def test_corr(self, datetime_series):
722
725
tm .assert_almost_equal (datetime_series .corr (datetime_series ), 1 )
723
726
724
727
# partial overlap
725
- tm .assert_almost_equal (datetime_series [:15 ].corr (datetime_series [5 :]), 1 )
728
+ tm .assert_almost_equal (datetime_series [:15 ].corr (datetime_series [5 :]),
729
+ 1 )
726
730
727
- assert isna (datetime_series [:15 ].corr (datetime_series [5 :], min_periods = 12 ))
731
+ assert isna (datetime_series [:15 ].corr (datetime_series [5 :],
732
+ min_periods = 12 ))
728
733
729
734
ts1 = datetime_series [:15 ].reindex (datetime_series .index )
730
735
ts2 = datetime_series [5 :].reindex (datetime_series .index )
@@ -789,7 +794,8 @@ def test_corr_invalid_method(self):
789
794
790
795
def test_cov (self , datetime_series ):
791
796
# full overlap
792
- tm .assert_almost_equal (datetime_series .cov (datetime_series ), datetime_series .std () ** 2 )
797
+ tm .assert_almost_equal (datetime_series .cov (datetime_series ),
798
+ datetime_series .std () ** 2 )
793
799
794
800
# partial overlap
795
801
tm .assert_almost_equal (datetime_series [:15 ].cov (datetime_series [5 :]),
@@ -804,7 +810,8 @@ def test_cov(self, datetime_series):
804
810
assert isna (cp .cov (cp ))
805
811
806
812
# min_periods
807
- assert isna (datetime_series [:15 ].cov (datetime_series [5 :], min_periods = 12 ))
813
+ assert isna (datetime_series [:15 ].cov (datetime_series [5 :],
814
+ min_periods = 12 ))
808
815
809
816
ts1 = datetime_series [:15 ].reindex (datetime_series .index )
810
817
ts2 = datetime_series [5 :].reindex (datetime_series .index )
0 commit comments