forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpressions.py
252 lines (190 loc) · 6.33 KB
/
expressions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""
Expressions
-----------
Offer fast expression evaluation through numexpr
"""
import warnings
import numpy as np
from pandas._config import get_option
from pandas._libs.lib import values_from_object
from pandas.core.dtypes.generic import ABCDataFrame
from pandas.core.computation.check import _NUMEXPR_INSTALLED
if _NUMEXPR_INSTALLED:
import numexpr as ne
_TEST_MODE = None
_TEST_RESULT = None
_USE_NUMEXPR = _NUMEXPR_INSTALLED
_evaluate = None
_where = None
# the set of dtypes that we will allow pass to numexpr
_ALLOWED_DTYPES = {
"evaluate": {"int64", "int32", "float64", "float32", "bool"},
"where": {"int64", "float64", "bool"},
}
# the minimum prod shape that we will use numexpr
_MIN_ELEMENTS = 10000
def set_use_numexpr(v=True):
# set/unset to use numexpr
global _USE_NUMEXPR
if _NUMEXPR_INSTALLED:
_USE_NUMEXPR = v
# choose what we are going to do
global _evaluate, _where
if not _USE_NUMEXPR:
_evaluate = _evaluate_standard
_where = _where_standard
else:
_evaluate = _evaluate_numexpr
_where = _where_numexpr
def set_numexpr_threads(n=None):
# if we are using numexpr, set the threads to n
# otherwise reset
if _NUMEXPR_INSTALLED and _USE_NUMEXPR:
if n is None:
n = ne.detect_number_of_cores()
ne.set_num_threads(n)
def _evaluate_standard(op, op_str, a, b):
""" standard evaluation """
if _TEST_MODE:
_store_test_result(False)
with np.errstate(all="ignore"):
return op(a, b)
def _can_use_numexpr(op, op_str, a, b, dtype_check):
""" return a boolean if we WILL be using numexpr """
if op_str is not None:
# required min elements (otherwise we are adding overhead)
if np.prod(a.shape) > _MIN_ELEMENTS:
# check for dtype compatibility
dtypes = set()
for o in [a, b]:
# Series implements dtypes, check for dimension count as well
if hasattr(o, "dtypes") and o.ndim > 1:
s = o.dtypes.value_counts()
if len(s) > 1:
return False
dtypes |= set(s.index.astype(str))
# ndarray and Series Case
elif hasattr(o, "dtype"):
dtypes |= {o.dtype.name}
# allowed are a superset
if not len(dtypes) or _ALLOWED_DTYPES[dtype_check] >= dtypes:
return True
return False
def _evaluate_numexpr(op, op_str, a, b):
result = None
if _can_use_numexpr(op, op_str, a, b, "evaluate"):
is_reversed = op.__name__.strip("_").startswith("r")
if is_reversed:
# we were originally called by a reversed op method
a, b = b, a
a_value = getattr(a, "values", a)
b_value = getattr(b, "values", b)
result = ne.evaluate(
f"a_value {op_str} b_value",
local_dict={"a_value": a_value, "b_value": b_value},
casting="safe",
)
if _TEST_MODE:
_store_test_result(result is not None)
if result is None:
result = _evaluate_standard(op, op_str, a, b)
return result
def _where_standard(cond, a, b):
return np.where(
values_from_object(cond), values_from_object(a), values_from_object(b)
)
def _where_numexpr(cond, a, b):
result = None
if _can_use_numexpr(None, "where", a, b, "where"):
cond_value = getattr(cond, "values", cond)
a_value = getattr(a, "values", a)
b_value = getattr(b, "values", b)
result = ne.evaluate(
"where(cond_value, a_value, b_value)",
local_dict={
"cond_value": cond_value,
"a_value": a_value,
"b_value": b_value,
},
casting="safe",
)
if result is None:
result = _where_standard(cond, a, b)
return result
# turn myself on
set_use_numexpr(get_option("compute.use_numexpr"))
def _has_bool_dtype(x):
if isinstance(x, ABCDataFrame):
return "bool" in x.dtypes
try:
return x.dtype == bool
except AttributeError:
return isinstance(x, (bool, np.bool_))
def _bool_arith_check(
op_str, a, b, not_allowed=frozenset(("/", "//", "**")), unsupported=None
):
if unsupported is None:
unsupported = {"+": "|", "*": "&", "-": "^"}
if _has_bool_dtype(a) and _has_bool_dtype(b):
if op_str in unsupported:
warnings.warn(
f"evaluating in Python space because the {repr(op_str)} "
f"operator is not supported by numexpr for "
f"the bool dtype, use {repr(unsupported[op_str])} instead"
)
return False
if op_str in not_allowed:
raise NotImplementedError(
f"operator {repr(op_str)} not implemented for bool dtypes"
)
return True
def evaluate(op, op_str, a, b, use_numexpr=True):
"""
Evaluate and return the expression of the op on a and b.
Parameters
----------
op : the actual operand
op_str : str
The string version of the op.
a : left operand
b : right operand
use_numexpr : bool, default True
Whether to try to use numexpr.
"""
use_numexpr = use_numexpr and _bool_arith_check(op_str, a, b)
if use_numexpr:
return _evaluate(op, op_str, a, b)
return _evaluate_standard(op, op_str, a, b)
def where(cond, a, b, use_numexpr=True):
"""
Evaluate the where condition cond on a and b.
Parameters
----------
cond : np.ndarray[bool]
a : return if cond is True
b : return if cond is False
use_numexpr : bool, default True
Whether to try to use numexpr.
"""
if use_numexpr:
return _where(cond, a, b)
return _where_standard(cond, a, b)
def set_test_mode(v=True):
"""
Keeps track of whether numexpr was used. Stores an additional ``True``
for every successful use of evaluate with numexpr since the last
``get_test_result``
"""
global _TEST_MODE, _TEST_RESULT
_TEST_MODE = v
_TEST_RESULT = []
def _store_test_result(used_numexpr):
global _TEST_RESULT
if used_numexpr:
_TEST_RESULT.append(used_numexpr)
def get_test_result():
"""get test result and reset test_results"""
global _TEST_RESULT
res = _TEST_RESULT
_TEST_RESULT = []
return res