forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
146 lines (116 loc) · 4.51 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""
This is a pseudo-public API for downstream libraries. We ask that downstream
authors
1) Try to avoid using internals directly altogether, and failing that,
2) Use only functions exposed here (or in core.internals)
"""
from __future__ import annotations
from typing import TYPE_CHECKING
import warnings
import numpy as np
from pandas._libs.internals import BlockPlacement
from pandas.util._exceptions import Pandas40DeprecationWarning
from pandas.core.dtypes.common import pandas_dtype
from pandas.core.dtypes.dtypes import (
DatetimeTZDtype,
ExtensionDtype,
PeriodDtype,
)
from pandas.core.arrays import (
DatetimeArray,
TimedeltaArray,
)
from pandas.core.construction import extract_array
from pandas.core.internals.blocks import (
check_ndim,
ensure_block_shape,
extract_pandas_array,
get_block_type,
maybe_coerce_values,
)
if TYPE_CHECKING:
from pandas._typing import (
ArrayLike,
Dtype,
)
from pandas.core.internals.blocks import Block
def _make_block(values: ArrayLike, placement: np.ndarray) -> Block:
"""
This is an analogue to blocks.new_block(_2d) that ensures:
1) correct dimension for EAs that support 2D (`ensure_block_shape`), and
2) correct EA class for datetime64/timedelta64 (`maybe_coerce_values`).
The input `values` is assumed to be either numpy array or ExtensionArray:
- In case of a numpy array, it is assumed to already be in the expected
shape for Blocks (2D, (cols, rows)).
- In case of an ExtensionArray the input can be 1D, also for EAs that are
internally stored as 2D.
For the rest no preprocessing or validation is done, except for those dtypes
that are internally stored as EAs but have an exact numpy equivalent (and at
the moment use that numpy dtype), i.e. datetime64/timedelta64.
"""
dtype = values.dtype
klass = get_block_type(dtype)
placement_obj = BlockPlacement(placement)
if (isinstance(dtype, ExtensionDtype) and dtype._supports_2d) or isinstance(
values, (DatetimeArray, TimedeltaArray)
):
values = ensure_block_shape(values, ndim=2)
values = maybe_coerce_values(values)
return klass(values, ndim=2, placement=placement_obj)
def make_block(
values, placement, klass=None, ndim=None, dtype: Dtype | None = None
) -> Block:
"""
This is a pseudo-public analogue to blocks.new_block.
We ask that downstream libraries use this rather than any fully-internal
APIs, including but not limited to:
- core.internals.blocks.make_block
- Block.make_block
- Block.make_block_same_class
- Block.__init__
"""
warnings.warn(
# GH#56815
"make_block is deprecated and will be removed in a future version. "
"Use pd.api.internals.create_dataframe_from_blocks or "
"(recommended) higher-level public APIs instead.",
Pandas40DeprecationWarning,
stacklevel=2,
)
if dtype is not None:
dtype = pandas_dtype(dtype)
values, dtype = extract_pandas_array(values, dtype, ndim)
from pandas.core.internals.blocks import ExtensionBlock
if klass is ExtensionBlock and isinstance(values.dtype, PeriodDtype):
# GH-44681 changed PeriodArray to be stored in the 2D
# NDArrayBackedExtensionBlock instead of ExtensionBlock
# -> still allow ExtensionBlock to be passed in this case for back compat
klass = None
if klass is None:
dtype = dtype or values.dtype
klass = get_block_type(dtype)
if not isinstance(placement, BlockPlacement):
placement = BlockPlacement(placement)
ndim = maybe_infer_ndim(values, placement, ndim)
if isinstance(values.dtype, (PeriodDtype, DatetimeTZDtype)):
# GH#41168 ensure we can pass 1D dt64tz values
# More generally, any EA dtype that isn't is_1d_only_ea_dtype
values = extract_array(values, extract_numpy=True)
values = ensure_block_shape(values, ndim)
check_ndim(values, placement, ndim)
values = maybe_coerce_values(values)
return klass(values, ndim=ndim, placement=placement)
def maybe_infer_ndim(values, placement: BlockPlacement, ndim: int | None) -> int:
"""
If `ndim` is not provided, infer it from placement and values.
"""
if ndim is None:
# GH#38134 Block constructor now assumes ndim is not None
if not isinstance(values.dtype, np.dtype):
if len(placement) != 1:
ndim = 1
else:
ndim = 2
else:
ndim = values.ndim
return ndim