forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_base_indexer.py
126 lines (101 loc) · 4.45 KB
/
test_base_indexer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import pytest
from pandas import DataFrame, Series
import pandas._testing as tm
from pandas.api.indexers import BaseIndexer
from pandas.core.window.indexers import ExpandingIndexer
def test_bad_get_window_bounds_signature():
class BadIndexer(BaseIndexer):
def get_window_bounds(self):
return None
indexer = BadIndexer()
with pytest.raises(ValueError, match="BadIndexer does not implement"):
Series(range(5)).rolling(indexer)
def test_expanding_indexer():
s = Series(range(10))
indexer = ExpandingIndexer()
result = s.rolling(indexer).mean()
expected = s.expanding().mean()
tm.assert_series_equal(result, expected)
def test_indexer_constructor_arg():
# Example found in computation.rst
use_expanding = [True, False, True, False, True]
df = DataFrame({"values": range(5)})
class CustomIndexer(BaseIndexer):
def get_window_bounds(self, num_values, min_periods, center, closed):
start = np.empty(num_values, dtype=np.int64)
end = np.empty(num_values, dtype=np.int64)
for i in range(num_values):
if self.use_expanding[i]:
start[i] = 0
end[i] = i + 1
else:
start[i] = i
end[i] = i + self.window_size
return start, end
indexer = CustomIndexer(window_size=1, use_expanding=use_expanding)
result = df.rolling(indexer).sum()
expected = DataFrame({"values": [0.0, 1.0, 3.0, 3.0, 10.0]})
tm.assert_frame_equal(result, expected)
def test_indexer_accepts_rolling_args():
df = DataFrame({"values": range(5)})
class CustomIndexer(BaseIndexer):
def get_window_bounds(self, num_values, min_periods, center, closed):
start = np.empty(num_values, dtype=np.int64)
end = np.empty(num_values, dtype=np.int64)
for i in range(num_values):
if center and min_periods == 1 and closed == "both" and i == 2:
start[i] = 0
end[i] = num_values
else:
start[i] = i
end[i] = i + self.window_size
return start, end
indexer = CustomIndexer(window_size=1)
result = df.rolling(indexer, center=True, min_periods=1, closed="both").sum()
expected = DataFrame({"values": [0.0, 1.0, 10.0, 3.0, 4.0]})
tm.assert_frame_equal(result, expected)
def test_win_type_not_implemented():
class CustomIndexer(BaseIndexer):
def get_window_bounds(self, num_values, min_periods, center, closed):
return np.array([0, 1]), np.array([1, 2])
df = DataFrame({"values": range(2)})
indexer = CustomIndexer()
with pytest.raises(NotImplementedError, match="BaseIndexer subclasses not"):
df.rolling(indexer, win_type="boxcar")
@pytest.mark.parametrize("func", ["std", "var", "count", "skew", "cov", "corr"])
def test_notimplemented_functions(func):
# GH 32865
class CustomIndexer(BaseIndexer):
def get_window_bounds(self, num_values, min_periods, center, closed):
return np.array([0, 1]), np.array([1, 2])
df = DataFrame({"values": range(2)})
indexer = CustomIndexer()
with pytest.raises(NotImplementedError, match=f"{func} is not supported"):
getattr(df.rolling(indexer), func)()
@pytest.mark.parametrize("constructor", [Series, DataFrame])
@pytest.mark.parametrize(
"func,alt_func,expected",
[
("min", np.min, [0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 6.0, 7.0, 8.0, np.nan]),
("max", np.max, [2.0, 3.0, 4.0, 100.0, 100.0, 100.0, 8.0, 9.0, 9.0, np.nan]),
],
)
def test_rolling_forward_window(constructor, func, alt_func, expected):
# GH 32865
class ForwardIndexer(BaseIndexer):
def get_window_bounds(self, num_values, min_periods, center, closed):
start = np.arange(num_values, dtype="int64")
end_s = start[: -self.window_size] + self.window_size
end_e = np.full(self.window_size, num_values, dtype="int64")
end = np.concatenate([end_s, end_e])
return start, end
values = np.arange(10)
values[5] = 100.0
indexer = ForwardIndexer(window_size=3)
rolling = constructor(values).rolling(window=indexer, min_periods=2)
result = getattr(rolling, func)()
expected = constructor(expected)
tm.assert_equal(result, expected)
expected2 = constructor(rolling.apply(lambda x: alt_func(x)))
tm.assert_equal(result, expected2)